voicegen / Libtorch C++ Infer /VITS-LibTorch.cpp
Plachta's picture
Upload 66 files
c6070db
raw
history blame
4.14 kB
#include <iostream>
#include <torch/torch.h>
#include <torch/script.h>
#include <string>
#include <vector>
#include <locale>
#include <codecvt>
#include <direct.h>
#include <fstream>
typedef int64_t int64;
namespace Shirakana {
struct WavHead {
char RIFF[4];
long int size0;
char WAVE[4];
char FMT[4];
long int size1;
short int fmttag;
short int channel;
long int samplespersec;
long int bytepersec;
short int blockalign;
short int bitpersamples;
char DATA[4];
long int size2;
};
int conArr2Wav(int64 size, int16_t* input, const char* filename) {
WavHead head = { {'R','I','F','F'},0,{'W','A','V','E'},{'f','m','t',' '},16,
1,1,22050,22050 * 2,2,16,{'d','a','t','a'},
0 };
head.size0 = size * 2 + 36;
head.size2 = size * 2;
std::ofstream ocout;
char* outputData = (char*)input;
ocout.open(filename, std::ios::out | std::ios::binary);
ocout.write((char*)&head, 44);
ocout.write(outputData, (int32_t)(size * 2));
ocout.close();
return 0;
}
inline std::wstring to_wide_string(const std::string& input)
{
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
inline std::string to_byte_string(const std::wstring& input)
{
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
}
#define val const auto
int main()
{
torch::jit::Module Vits;
std::string buffer;
std::vector<int64> text;
std::vector<int16_t> data;
while(true)
{
while (true)
{
std::cin >> buffer;
if (buffer == "end")
return 0;
if(buffer == "model")
{
std::cin >> buffer;
Vits = torch::jit::load(buffer);
continue;
}
if (buffer == "endinfer")
{
Shirakana::conArr2Wav(data.size(), data.data(), "temp\\tmp.wav");
data.clear();
std::cout << "endofinfe";
continue;
}
if (buffer == "line")
{
std::cin >> buffer;
while (buffer.find("endline")==std::string::npos)
{
text.push_back(std::atoi(buffer.c_str()));
std::cin >> buffer;
}
val InputTensor = torch::from_blob(text.data(), { 1,static_cast<int64>(text.size()) }, torch::kInt64);
std::array<int64, 1> TextLength{ static_cast<int64>(text.size()) };
val InputTensor_length = torch::from_blob(TextLength.data(), { 1 }, torch::kInt64);
std::vector<torch::IValue> inputs;
inputs.push_back(InputTensor);
inputs.push_back(InputTensor_length);
if (buffer.length() > 7)
{
std::array<int64, 1> speakerIndex{ (int64)atoi(buffer.substr(7).c_str()) };
inputs.push_back(torch::from_blob(speakerIndex.data(), { 1 }, torch::kLong));
}
val output = Vits.forward(inputs).toTuple()->elements()[0].toTensor().multiply(32276.0F);
val outputSize = output.sizes().at(2);
val floatOutput = output.data_ptr<float>();
int16_t* outputTmp = (int16_t*)malloc(sizeof(float) * outputSize);
if (outputTmp == nullptr) {
throw std::exception("内存不足");
}
for (int i = 0; i < outputSize; i++) {
*(outputTmp + i) = (int16_t) * (floatOutput + i);
}
data.insert(data.end(), outputTmp, outputTmp+outputSize);
free(outputTmp);
text.clear();
std::cout << "endofline";
}
}
}
//model S:\VSGIT\ShirakanaTTSUI\build\x64\Release\Mods\AtriVITS\AtriVITS_LJS.pt
}