Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import time | |
from collections.abc import Sequence | |
from typing import Any, cast | |
import gradio as gr | |
import numpy as np | |
import pillow_heif | |
import spaces | |
import torch | |
from gradio_image_annotation import image_annotator | |
from gradio_imageslider import ImageSlider | |
from PIL import Image | |
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml | |
from refiners.fluxion.utils import no_grad | |
from refiners.solutions import BoxSegmenter | |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor | |
BoundingBox = tuple[int, int, int, int] | |
pillow_heif.register_heif_opener() | |
pillow_heif.register_avif_opener() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# weird dance because ZeroGPU | |
segmenter = BoxSegmenter(device="cpu") | |
segmenter.device = device | |
segmenter.model = segmenter.model.to(device=segmenter.device) | |
gd_model_path = "IDEA-Research/grounding-dino-base" | |
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) | |
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) | |
gd_model = gd_model.to(device=device) # type: ignore | |
assert isinstance(gd_model, GroundingDinoForObjectDetection) | |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: | |
if not bboxes: | |
return None | |
for bbox in bboxes: | |
assert len(bbox) == 4 | |
assert all(isinstance(x, int) for x in bbox) | |
return ( | |
min(bbox[0] for bbox in bboxes), | |
min(bbox[1] for bbox in bboxes), | |
max(bbox[2] for bbox in bboxes), | |
max(bbox[3] for bbox in bboxes), | |
) | |
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: | |
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) | |
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) | |
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: | |
assert isinstance(gd_processor, GroundingDinoProcessor) | |
# Grounding Dino expects a dot after each category. | |
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) | |
with no_grad(): | |
outputs = gd_model(**inputs) | |
width, height = img.size | |
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( | |
outputs, | |
inputs["input_ids"], | |
target_sizes=[(height, width)], | |
)[0] | |
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) | |
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) | |
return bbox_union(bboxes.numpy().tolist()) | |
def apply_mask( | |
img: Image.Image, | |
mask_img: Image.Image, | |
defringe: bool = True, | |
) -> Image.Image: | |
assert img.size == mask_img.size | |
img = img.convert("RGB") | |
mask_img = mask_img.convert("L") | |
if defringe: | |
# Mitigate edge halo effects via color decontamination | |
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 | |
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) | |
img = Image.fromarray((foreground * 255).astype("uint8")) | |
result = Image.new("RGBA", img.size) | |
result.paste(img, (0, 0), mask_img) | |
return result | |
def _gpu_process( | |
img: Image.Image, | |
prompt: str | BoundingBox | None, | |
) -> tuple[Image.Image, BoundingBox | None, list[str]]: | |
# Because of ZeroGPU shenanigans, we need a *single* function with the | |
# `spaces.GPU` decorator that *does not* contain postprocessing. | |
time_log: list[str] = [] | |
if isinstance(prompt, str): | |
t0 = time.time() | |
bbox = gd_detect(img, prompt) | |
time_log.append(f"detect: {time.time() - t0}") | |
if not bbox: | |
print(time_log[0]) | |
raise gr.Error("No object detected") | |
else: | |
bbox = prompt | |
t0 = time.time() | |
mask = segmenter(img, bbox) | |
time_log.append(f"segment: {time.time() - t0}") | |
return mask, bbox, time_log | |
def _process( | |
img: Image.Image, | |
prompt: str | BoundingBox | None, | |
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
# enforce max dimensions for pymatting performance reasons | |
if img.width > 2048 or img.height > 2048: | |
orig_res = max(img.width, img.height) | |
img.thumbnail((2048, 2048)) | |
if isinstance(prompt, tuple): | |
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) | |
prompt = (x0, y0, x1, y1) | |
mask, bbox, time_log = _gpu_process(img, prompt) | |
t0 = time.time() | |
masked_alpha = apply_mask(img, mask, defringe=True) | |
time_log.append(f"crop: {time.time() - t0}") | |
print(", ".join(time_log)) | |
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) | |
thresholded = mask.point(lambda p: 255 if p > 10 else 0) | |
bbox = thresholded.getbbox() | |
to_dl = masked_alpha.crop(bbox) | |
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") | |
to_dl.save(temp, format="PNG") | |
temp.close() | |
return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True) | |
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
assert isinstance(img := prompts["image"], Image.Image) | |
assert isinstance(boxes := prompts["boxes"], list) | |
if len(boxes) == 1: | |
assert isinstance(box := boxes[0], dict) | |
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) | |
else: | |
assert len(boxes) == 0 | |
bbox = None | |
return _process(img, bbox) | |
def on_change_bbox(img: Image.Image | None): | |
return gr.update(interactive=bool(img)) | |
def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: | |
return _process(img, prompt) | |
def on_change_prompt(img: Image.Image | None, prompt: str | None): | |
return gr.update(interactive=bool(img and prompt)) | |
TITLE = """ | |
<center> | |
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;"> | |
Object Cutter Powered By Refiners | |
</h1> | |
<div style=" | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
gap: 0.5rem; | |
margin-bottom: 0.5rem; | |
font-size: 1.25rem; | |
flex-wrap: wrap; | |
"> | |
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a> | |
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a> | |
<a | |
href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" | |
target="_blank" | |
>[Finegrain Object Eraser]</a> | |
<a | |
href="https://huggingface.co/spaces/finegrain/finegrain-image-enhancer" | |
target="_blank" | |
>[Finegrain Image Enhancer]</a> | |
</div> | |
<p> | |
Create high-quality HD cutouts for any object in your image with just a text prompt — no manual work required! | |
<br> | |
The object will be available on a transparent background, ready to paste elsewhere. | |
</p> | |
<p> | |
This space uses the | |
<a | |
href="https://huggingface.co/finegrain/finegrain-box-segmenter" | |
target="_blank" | |
>Finegrain Box Segmenter model</a>, | |
trained with a mix of natural data curated by Finegrain and | |
<a | |
href="https://huggingface.co/datasets/Nfiniteai/product-masks-sample" | |
target="_blank" | |
>synthetic data provided by Nfinite</a>. | |
<br> | |
It is powered by Refiners, our open source micro-framework for simple foundation model adaptation. | |
If you enjoyed it, please consider starring Refiners on GitHub! | |
</p> | |
<a href="https://github.com/finegrain-ai/refiners" target="_blank"> | |
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" /> | |
</a> | |
</center> | |
""" | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Tab("By prompt", id="tab_prompt"): | |
with gr.Row(): | |
with gr.Column(): | |
iimg = gr.Image(type="pil", label="Input") | |
prompt = gr.Textbox(label="What should we cut?") | |
btn = gr.ClearButton(value="Cut Out Object", interactive=False) | |
with gr.Column(): | |
oimg = ImageSlider(label="Before / After", show_download_button=False, interactive=False) | |
dlbt = gr.DownloadButton("Download Cutout", interactive=False) | |
btn.add(oimg) | |
for inp in [iimg, prompt]: | |
inp.change( | |
fn=on_change_prompt, | |
inputs=[iimg, prompt], | |
outputs=[btn], | |
) | |
btn.click( | |
fn=process_prompt, | |
inputs=[iimg, prompt], | |
outputs=[oimg, dlbt], | |
api_name=False, | |
) | |
examples = [ | |
[ | |
"examples/potted-plant.jpg", | |
"potted plant", | |
], | |
[ | |
"examples/chair.jpg", | |
"chair", | |
], | |
[ | |
"examples/black-lamp.jpg", | |
"black lamp", | |
], | |
] | |
ex = gr.Examples( | |
examples=examples, | |
inputs=[iimg, prompt], | |
outputs=[oimg, dlbt], | |
fn=process_prompt, | |
cache_examples=True, | |
) | |
with gr.Tab("By bounding box", id="tab_bb"): | |
with gr.Row(): | |
with gr.Column(): | |
annotator = image_annotator( | |
image_type="pil", | |
disable_edit_boxes=True, | |
show_download_button=False, | |
show_share_button=False, | |
single_box=True, | |
label="Input", | |
) | |
btn = gr.ClearButton(value="Cut Out Object", interactive=False) | |
with gr.Column(): | |
oimg = ImageSlider(label="Before / After", show_download_button=False) | |
dlbt = gr.DownloadButton("Download Cutout", interactive=False) | |
btn.add(oimg) | |
iimg.change( | |
fn=on_change_bbox, | |
inputs=[iimg], | |
outputs=[btn], | |
) | |
btn.click( | |
fn=process_bbox, | |
inputs=[annotator], | |
outputs=[oimg, dlbt], | |
api_name=False, | |
) | |
examples = [ | |
{ | |
"image": "examples/potted-plant.jpg", | |
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}], | |
}, | |
{ | |
"image": "examples/chair.jpg", | |
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}], | |
}, | |
{ | |
"image": "examples/black-lamp.jpg", | |
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}], | |
}, | |
] | |
ex = gr.Examples( | |
examples=examples, | |
inputs=[annotator], | |
outputs=[oimg, dlbt], | |
fn=process_bbox, | |
cache_examples=True, | |
) | |
demo.queue(max_size=30, api_open=False) | |
demo.launch(show_api=False) | |