Spaces:
Running
Running
File size: 8,326 Bytes
a49e567 ffb89fc e19b69e 6c0ef19 e19b69e ffb89fc a49e567 6c0ef19 a49e567 6c0ef19 a49e567 6c0ef19 ad7af6e 6c0ef19 a49e567 6c0ef19 a49e567 6c0ef19 a49e567 6c0ef19 a49e567 e19b69e a49e567 ad7af6e 6c0ef19 ad7af6e 6c0ef19 a49e567 e19b69e a49e567 e19b69e 771025f 0cfa8fe e19b69e 6c0ef19 e19b69e 5d090c0 e19b69e 6c0ef19 e19b69e 6c0ef19 a49e567 6c0ef19 e19b69e 6c0ef19 e19b69e ffb89fc a49e567 e19b69e a49e567 bc305d6 ed7a961 a49e567 e19b69e 6c0ef19 e19b69e ad7af6e e19b69e a49e567 6c0ef19 e19b69e 6c0ef19 a49e567 e19b69e a49e567 e19b69e a49e567 771025f a49e567 e19b69e a49e567 ad7af6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
import paperqa
import pickle
import pandas as pd
from pathlib import Path
import requests
import zipfile
import io
import tempfile
import os
css_style = """
.gradio-container {
font-family: "IBM Plex Mono";
}
"""
def request_pathname(files, data, openai_api_key):
if files is None:
return [[]]
for file in files:
# make sure we're not duplicating things in the dataset
if file.name in [x[0] for x in data]:
continue
data.append([file.name, None, None])
return [[len(data), 0]], data, data, validate_dataset(pd.DataFrame(data), openai_api_key)
def validate_dataset(dataset, openapi):
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready and type(openapi) is str and len(openapi) > 0:
return "✨Ready✨"
elif docs_ready:
return "⚠️Waiting for key⚠️"
elif type(openapi) is str and len(openapi) > 0:
return "⚠️Waiting for documents⚠️"
else:
return "⚠️Waiting for documents and key⚠️"
def make_stats(docs):
return [[len(docs.doc_previews), sum([x[0] for x in docs.doc_previews])]]
# , progress=gr.Progress()):
def do_ask(question, button, openapi, dataset, length, do_marg, k, max_sources, docs):
passages = ""
docs_ready = dataset.iloc[-1, 0] != ""
if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:
os.environ['OPENAI_API_KEY'] = openapi.strip()
if docs is None:
docs = paperqa.Docs()
# dataset is pandas dataframe
for _, row in dataset.iterrows():
try:
docs.add(row['filepath'], row['citation string'],
key=row['key'], disable_check=True)
yield "", "", "", docs, make_stats(docs)
except Exception as e:
pass
else:
yield "", "", "", docs, [[0, 0]]
#progress(0, "Building Index...")
docs._build_faiss_index()
#progress(0.25, "Querying...")
for i, result in enumerate(docs.query_gen(question,
length_prompt=f'use {length:d} words',
marginal_relevance=do_marg,
k=k, max_sources=max_sources)):
#progress(0.25 + 0.1 * i, "Generating Context" + str(i))
yield result.formatted_answer, result.context, passages, docs, make_stats(docs)
#progress(1.0, "Done!")
# format the passages
for i, (key, passage) in enumerate(result.passages.items()):
passages += f'Disabled for now'
yield result.formatted_answer, result.context, passages, docs, make_stats(docs)
def download_repo(gh_repo, data, openai_api_key, pbar=gr.Progress()):
# download zipped version of repo
r = requests.get(f'https://api.github.com/repos/{gh_repo}/zipball')
if r.status_code == 200:
pbar(1, 'Downloaded')
# iterate through files in zip
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
for i, f in enumerate(z.namelist()):
# skip directories
if f.endswith('/'):
continue
# try to read as plaintext (skip binary files)
try:
text = z.read(f).decode('utf-8')
except UnicodeDecodeError:
continue
# check if it's bigger than 100kb or smaller than 10 bytes
if len(text) > 1e5 or len(text) < 10:
continue
# have to save to temporary file so we have a path
with tempfile.NamedTemporaryFile(delete=False) as tmp:
tmp.write(text.encode('utf-8'))
tmp.flush()
path = tmp.name
# strip off the first directory of f
rel_path = '/'.join(f.split('/')[1:])
key = os.path.basename(f)
citation = f'[{rel_path}](https://github.com/{gh_repo}/tree/main/{rel_path})'
if path in [x[0] for x in data]:
continue
data.append([path, citation, key])
yield [[len(data), 0]], data, data, validate_dataset(pd.DataFrame(data), openai_api_key)
pbar(int((i+1)/len(z.namelist()) * 99),
f'Added {f}')
pbar(100, 'Done')
else:
raise ValueError('Unknown Github Repo')
return data
with gr.Blocks(css=css_style) as demo:
docs = gr.State(None)
data = gr.State([])
openai_api_key = gr.State('')
gr.Markdown(f"""
# Document Question and Answer (v{paperqa.__version__})
*By Andrew White ([@andrewwhite01](https://twitter.com/andrewwhite01))*
This tool will enable asking questions of your uploaded text, PDF documents,
or scrape github repos.
It uses OpenAI's GPT models and thus you must enter your API key below. This
tool is under active development and currently uses many tokens - up to 10,000
for a single query. That is $0.10-0.20 per query, so please be careful!
* [PaperQA](https://github.com/whitead/paper-qa) is the code used to build this tool.
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
2. Upload your documents
3. Ask a questions
""")
openai_api_key = gr.Textbox(
label="OpenAI API Key", placeholder="sk-...", type="password")
with gr.Tab('File Upload'):
uploaded_files = gr.File(
label="Your Documents Upload (PDF or txt)", file_count="multiple", )
with gr.Tab('Github Repo'):
gh_repo = gr.Textbox(
label="Github Repo", placeholder="whitead/paper-qa")
download = gr.Button("Download Repo")
with gr.Accordion("See Docs:", open=False):
dataset = gr.Dataframe(
headers=["filepath", "citation string", "key"],
datatype=["str", "str", "str"],
col_count=(3, "fixed"),
interactive=False,
label="Documents and Citations",
overflow_row_behaviour='paginate',
max_rows=5
)
buildb = gr.Textbox("⚠️Waiting for documents and key...",
label="Status", interactive=False, show_label=True,
max_lines=1)
stats = gr.Dataframe(headers=['Docs', 'Chunks'],
datatype=['number', 'number'],
col_count=(2, "fixed"),
interactive=False,
label="Doc Stats")
openai_api_key.change(validate_dataset, inputs=[
dataset, openai_api_key], outputs=[buildb])
dataset.change(validate_dataset, inputs=[
dataset, openai_api_key], outputs=[buildb])
uploaded_files.change(request_pathname, inputs=[
uploaded_files, data, openai_api_key], outputs=[stats, data, dataset, buildb])
download.click(fn=download_repo, inputs=[
gh_repo, data, openai_api_key], outputs=[stats, data, dataset, buildb])
query = gr.Textbox(
placeholder="Enter your question here...", label="Question")
with gr.Row():
length = gr.Slider(25, 200, value=100, step=5,
label='Words in answer')
marg = gr.Checkbox(True, label='Max marginal relevance')
k = gr.Slider(1, 20, value=10, step=1,
label='Chunks to examine')
sources = gr.Slider(1, 10, value=5, step=1,
label='Contexts to include')
ask = gr.Button("Ask Question")
answer = gr.Markdown(label="Answer")
with gr.Accordion("Context", open=True):
context = gr.Markdown(label="Context")
with gr.Accordion("Raw Text", open=False):
passages = gr.Markdown(label="Passages")
ask.click(fn=do_ask, inputs=[query, buildb,
openai_api_key, dataset,
length, marg, k, sources,
docs], outputs=[answer, context, passages, docs, stats])
demo.queue(concurrency_count=20)
demo.launch(show_error=True)
|