File size: 6,816 Bytes
ca822d3
 
 
 
 
 
 
 
 
 
 
b6e0a71
ca822d3
 
 
 
 
 
 
 
 
b6e0a71
ca822d3
 
 
f79ac93
 
 
ca822d3
 
 
 
 
 
73b790b
ca822d3
 
 
 
 
 
 
73b790b
ca822d3
b6e0a71
 
 
 
 
73b790b
3cb2c68
 
ca822d3
 
73b790b
 
ca822d3
 
 
 
 
 
 
3cb2c68
ca822d3
 
 
 
1383dae
ca822d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e0a71
ca822d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383dae
 
 
ca822d3
 
1383dae
ca822d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383dae
 
 
 
 
 
 
 
 
 
 
 
 
 
ca822d3
1383dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca822d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383dae
ca822d3
 
 
 
 
 
 
 
 
 
 
 
 
 
73b790b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import asyncio
import json
import logging
import traceback
from pydantic import BaseModel

from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.staticfiles import StaticFiles

from diffusers import DiffusionPipeline, AutoencoderTiny
import torch
from PIL import Image
import numpy as np
import gradio as gr
import io
import uuid
import os
import time

MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)

print(f"TIMEOUT: {TIMEOUT}")
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")

if SAFETY_CHECKER == "True":
    pipe = DiffusionPipeline.from_pretrained(
        "SimianLuo/LCM_Dreamshaper_v7",
        custom_pipeline="latent_consistency_img2img.py",
        custom_revision="main",
        torch_dtype=torch.float32
    )
else:
    pipe = DiffusionPipeline.from_pretrained(
        "SimianLuo/LCM_Dreamshaper_v7",
        safety_checker=None,
        custom_pipeline="latent_consistency_img2img.py",
        custom_revision="main",
        torch_dtype=torch.float32
    )
#TODO try to use tiny VAE
# pipe.vae = AutoencoderTiny.from_pretrained(
#     "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
# )
pipe.set_progress_bar_config(disable=True)
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
user_queue_map = {}

# for torch.compile
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])

def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232):
    generator = torch.manual_seed(seed)
    # Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
    num_inference_steps = 4
    results = pipe(
        prompt=prompt,
        # generator=generator,
        image=input_image,
        strength=strength,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        lcm_origin_steps=30,
        output_type="pil",
    )
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        return None
    return results.images[0]


app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class InputParams(BaseModel):
    seed: int
    prompt: str
    strength: float
    guidance_scale: float


@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
        print("Server is full")
        await websocket.send_json({"status": "error", "message": "Server is full"})
        await websocket.close()
        return

    try:
        uid = str(uuid.uuid4())
        print(f"New user connected: {uid}")
        await websocket.send_json(
            {"status": "success", "message": "Connected", "userId": uid}
        )
        params = await websocket.receive_json()
        params = InputParams(**params)
        user_queue_map[uid] = {
            "queue": asyncio.Queue(),
            "params": params,
        }
        await websocket.send_json(
            {"status": "start", "message": "Start Streaming", "userId": uid}
        )
        await handle_websocket_data(websocket, uid)
    except WebSocketDisconnect as e:
        logging.error(f"WebSocket Error: {e}, {uid}")
        traceback.print_exc()
    finally:
        print(f"User disconnected: {uid}")
        queue_value = user_queue_map.pop(uid, None)
        queue = queue_value.get("queue", None)
        if queue:
            while not queue.empty():
                try:
                    queue.get_nowait()
                except asyncio.QueueEmpty:
                    continue


@app.get("/queue_size")
async def get_queue_size():
    queue_size = len(user_queue_map)
    return JSONResponse({"queue_size": queue_size})


@app.get("/stream/{user_id}")
async def stream(user_id: uuid.UUID):
    uid = str(user_id)
    try:
        user_queue = user_queue_map[uid]
        queue = user_queue["queue"]
        params = user_queue["params"]
        seed = params.seed
        prompt = params.prompt
        strength = params.strength
        guidance_scale = params.guidance_scale

        async def generate():
            while True:
                input_image = await queue.get()
                if input_image is None:
                    continue

                image = predict(input_image, prompt, guidance_scale, strength, seed)
                if image is None:
                    continue
                frame_data = io.BytesIO()
                image.save(frame_data, format="JPEG")
                frame_data = frame_data.getvalue()
                if frame_data is not None and len(frame_data) > 0:
                    yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"

                await asyncio.sleep(1.0 / 120.0)

        return StreamingResponse(
            generate(), media_type="multipart/x-mixed-replace;boundary=frame"
        )
    except Exception as e:
        logging.error(f"Streaming Error: {e}, {user_queue_map}")
        traceback.print_exc()
        return HTTPException(status_code=404, detail="User not found")


async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
    uid = str(user_id)
    user_queue = user_queue_map[uid]
    queue = user_queue["queue"]
    if not queue:
        return HTTPException(status_code=404, detail="User not found")
    last_time = time.time()
    try:
        while True:
            data = await websocket.receive_bytes()
            pil_image = Image.open(io.BytesIO(data))

            while not queue.empty():
                try:
                    queue.get_nowait()
                except asyncio.QueueEmpty:
                    continue
            await queue.put(pil_image)
            if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
                await websocket.send_json(
                    {
                        "status": "timeout",
                        "message": "Your session has ended",
                        "userId": uid,
                    }
                )
                await websocket.close()
                return

    except Exception as e:
        logging.error(f"Error: {e}")
        traceback.print_exc()


app.mount("/", StaticFiles(directory="img2img", html=True), name="public")