File size: 3,045 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# TensorMask in Detectron2
**A Foundation for Dense Object Segmentation**
Xinlei Chen, Ross Girshick, Kaiming He, Piotr Dollár
[[`arXiv`](https://arxiv.org/abs/1903.12174)] [[`BibTeX`](#CitingTensorMask)]
<div align="center">
<img src="http://xinleic.xyz/images/tmask.png" width="700px" />
</div>
In this repository, we release code for TensorMask in Detectron2.
TensorMask is a dense sliding-window instance segmentation framework that, for the first time, achieves results close to the well-developed Mask R-CNN framework -- both qualitatively and quantitatively. It establishes a conceptually complementary direction for object instance segmentation research.
## Installation
First install Detectron2 following the [documentation](https://detectron2.readthedocs.io/tutorials/install.html) and
[setup the dataset](../../datasets). Then compile the TensorMask-specific op (`swap_align2nat`):
```bash
cd /path/to/detectron2/projects/TensorMask
python setup.py build develop
```
## Training
To train a model, run:
```bash
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file <config.yaml>
```
For example, to launch TensorMask BiPyramid training (1x schedule) with ResNet-50 backbone on 8 GPUs,
one should execute:
```bash
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_1x.yaml --num-gpus 8
```
## Evaluation
Model evaluation can be done similarly (6x schedule with scale augmentation):
```bash
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_6x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
```
# Pretrained Models
| Backbone | lr sched | AP box | AP mask | download |
| -------- | -------- | -- | --- | -------- |
| R50 | 1x | 37.6 | 32.4 | <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_1x/152549419/model_final_8f325c.pkl">model</a> \| <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_1x/152549419/metrics.json">metrics</a> |
| R50 | 6x | 41.4 | 35.8 | <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_6x/153538791/model_final_e8df31.pkl">model</a> \| <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_6x/153538791/metrics.json">metrics</a> |
## <a name="CitingTensorMask"></a>Citing TensorMask
If you use TensorMask, please use the following BibTeX entry.
```
@InProceedings{chen2019tensormask,
title={Tensormask: A Foundation for Dense Object Segmentation},
author={Chen, Xinlei and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
journal={The International Conference on Computer Vision (ICCV)},
year={2019}
}
```
|