import gradio as gr import requests import os from PIL import Image from io import BytesIO from tqdm import tqdm import time repo = "artificialguybr/TshirtDesignRedmond-V2" def infer(color_prompt, dress_type_prompt, design_prompt, text): prompt = ( f"A single {color_prompt} colored {dress_type_prompt} featuring a bold {design_prompt} design on the front, hanging on a plain wall. The soft light and shadows, creating a striking contrast against the minimal background, evoking modern sophistication.") full_prompt = f"{prompt}" print("Generating image with prompt:", full_prompt) api_url = f"https://api-inference.huggingface.co/models/{repo}" #token = os.getenv("API_TOKEN") # Uncomment and use your Hugging Face API token headers = { #"Authorization": f"Bearer {token}" } payload = { "inputs": full_prompt, "parameters": { "negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)", "num_inference_steps": 30, "scheduler": "DPMSolverMultistepScheduler" }, } error_count = 0 pbar = tqdm(total=None, desc="Loading model") while True: print("Sending request to API...") response = requests.post(api_url, headers=headers, json=payload) print("API response status code:", response.status_code) if response.status_code == 200: print("Image generation successful!") return Image.open(BytesIO(response.content)) elif response.status_code == 503: time.sleep(1) pbar.update(1) elif response.status_code == 500 and error_count < 5: time.sleep(1) error_count += 1 else: print("API Error:", response.status_code) raise Exception(f"API Error: {response.status_code}") # Gradio Interface iface = gr.Interface( fn=infer, inputs=[ gr.Textbox(lines=1, placeholder="Color Prompt"), # color_prompt gr.Textbox(lines=1, placeholder="Dress Type Prompt"), # dress_type_prompt gr.Textbox(lines=2, placeholder="Design Prompt"), # design_prompt gr.Textbox(lines=1, placeholder="Text (Optional)"), # text ], outputs="image", title="Make your Brand", description="Generation of clothes", examples=[["Red", "T-shirt", "Simple design", "Stylish Text"]] ) print("Launching Gradio interface...") iface.launch()