File size: 5,579 Bytes
238cf85 afcd47e 238cf85 d488098 238cf85 d488098 238cf85 a187191 c5f68e0 910a5d8 238cf85 d1dbfbe 238cf85 345ab15 238cf85 a187191 345ab15 238cf85 afcd47e 238cf85 afcd47e 238cf85 afcd47e 238cf85 afcd47e 345ab15 a187191 345ab15 c5f68e0 910a5d8 a187191 910a5d8 345ab15 c5f68e0 910a5d8 a187191 910a5d8 345ab15 c5f68e0 afcd47e a187191 238cf85 afcd47e 345ab15 a187191 afcd47e 345ab15 afcd47e 238cf85 afcd47e 238cf85 afcd47e a187191 afcd47e a187191 afcd47e a187191 afcd47e a187191 345ab15 a187191 238cf85 345ab15 238cf85 910a5d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = f"{prompt_part1} {color} {dress-type} {design} {prompt_part5}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt_part1 = gr.Textbox(
value="a single",
label="Prompt Part 1",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part1"
)
gr.Markdown(f"**Prompt Part 1:** a single")
prompt_part2 = gr.Textbox(
label="color",
show_label=False,
max_lines=1,
placeholder="Enter prompt part 2 (e.g., color category)",
container=False,
)
prompt_part3 = gr.Textbox(
label="dress-type",
show_label=False,
max_lines=1,
placeholder="Enter prompt part 3 (e.g., t-shirt, sweatshirt, shirt, hoodie)",
container=False,
)
prompt_part4 = gr.Textbox(
label="design",
show_label=False,
max_lines=1,
placeholder="Enter design prompt",
container=False,
)
prompt_part5 = gr.Textbox(
value="hanging on the plain grey wall",
label="Prompt Part 5",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part5"
)
gr.Markdown(f"**Prompt Part 5:** hanging on the plain grey wall")
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt_part2]
)
run_button.click(
fn=infer,
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|