gaur3009 commited on
Commit
ffcb5a1
1 Parent(s): dad9bab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -87
app.py CHANGED
@@ -1,9 +1,12 @@
1
  import gradio as gr
 
 
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  if torch.cuda.is_available():
@@ -19,31 +22,39 @@ MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
 
26
  generator = torch.Generator().manual_seed(seed)
27
 
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
  ).images[0]
37
 
38
  return image
39
 
 
 
 
 
 
 
 
 
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
@@ -56,91 +67,88 @@ else:
56
  power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
  Currently running on {power_device}.
64
  """)
65
-
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
 
 
 
 
 
 
 
 
87
  )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
  import numpy as np
5
  import random
6
+ import cv2
7
+ from diffusers import DiffusionPipeline, StableDiffusionPipeline
8
 
9
+ # Setup the model
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
  if torch.cuda.is_available():
 
22
  MAX_IMAGE_SIZE = 1024
23
 
24
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
 
28
  generator = torch.Generator().manual_seed(seed)
29
 
30
  image = pipe(
31
+ prompt=prompt,
32
+ negative_prompt=negative_prompt,
33
+ guidance_scale=guidance_scale,
34
+ num_inference_steps=num_inference_steps,
35
+ width=width,
36
+ height=height,
37
+ generator=generator
38
  ).images[0]
39
 
40
  return image
41
 
42
+ # Generate T-shirt design function
43
+ def generate_tshirt_design(style, color, graphics, text=None):
44
+ prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
45
+ if text:
46
+ prompt += f", text: {text}"
47
+ image = pipe(prompt).images[0]
48
+ return image
49
+
50
+ # T-shirt mockup generator with Gradio interface
51
  examples = [
52
+ ["Casual", "White", "Logo: MyBrand", None],
53
+ ["Formal", "Black", "Text: Hello World", "Custom text"],
54
+ ["Sports", "Red", "Graphic: Team logo", None],
55
  ]
56
 
57
+ css = """
58
  #col-container {
59
  margin: 0 auto;
60
  max-width: 520px;
 
67
  power_device = "CPU"
68
 
69
  with gr.Blocks(css=css) as demo:
 
70
  with gr.Column(elem_id="col-container"):
71
  gr.Markdown(f"""
72
+ # T-shirt Mockup Generator with Rookus AI
73
  Currently running on {power_device}.
74
  """)
75
+
76
  with gr.Row():
77
+ style = gr.Dropdown(
78
+ label="T-shirt Style",
79
+ choices=["Casual", "Formal", "Sports"],
80
+ value="Casual",
 
 
81
  container=False,
82
  )
83
+
84
+ run_button = gr.Button("Generate Mockup", scale=0)
85
+
86
+ result = gr.Image(label="Mockup", show_label=False)
87
+
88
+ with gr.Accordion("Design Options", open=False):
89
+ color = gr.Radio(
90
+ label="T-shirt Color",
91
+ choices=[
92
+ "White", "Black", "Blue", "Red", "Green", "Yellow", "Pink", "Purple", "Orange", "Brown",
93
+ "Gray", "Maroon", "Navy", "Teal", "Lime", "Olive", "Cyan", "Magenta", "Beige", "Turquoise",
94
+ "Gold", "Silver", "Lavender", "Mint", "Coral", "Indigo"
95
+ ],
96
+ value="White",
97
+ )
98
+
99
+ graphics = gr.Textbox(
100
+ label="Graphics/Logo",
101
+ placeholder="Enter graphics or logo details",
102
+ visible=True,
103
  )
104
+
105
+ text = gr.Textbox(
106
+ label="Text (optional)",
107
+ placeholder="Enter optional text",
108
+ visible=True,
 
 
109
  )
110
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  gr.Examples(
112
+ examples=examples,
113
+ inputs=[style, color, graphics, text]
114
  )
115
 
116
+ def generate_tshirt_mockup(style, color, graphics, text=None):
117
+ # Generate T-shirt design
118
+ design_image = generate_tshirt_design(style, color, graphics, text)
119
+
120
+ # Load blank T-shirt mockup template image
121
+ mockup_template = Image.open("https://th.bing.com/th/id/OIP.oYpJxkyDYCFdF4GJulkFcQHaFj?rs=1&pid=ImgDetMain")
122
+
123
+ # Convert design image and mockup template to numpy arrays
124
+ design_np = np.array(design_image)
125
+ mockup_np = np.array(mockup_template)
126
+
127
+ # Resize design image to fit mockup (example resizing)
128
+ design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))
129
+
130
+ # Example: Overlay design onto mockup using OpenCV
131
+ y_offset = mockup_np.shape[0] // 4
132
+ x_offset = mockup_np.shape[1] // 4
133
+ y1, y2 = y_offset, y_offset + design_resized.shape[0]
134
+ x1, x2 = x_offset, x_offset + design_resized.shape[1]
135
+
136
+ alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
137
+ alpha_l = 1.0 - alpha_s
138
+
139
+ for c in range(0, 3):
140
+ mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
141
+ alpha_l * mockup_np[y1:y2, x1:x2, c])
142
+
143
+ # Convert back to PIL image for Gradio output
144
+ result_image = Image.fromarray(mockup_np)
145
+
146
+ return result_image
147
+
148
  run_button.click(
149
+ fn=generate_tshirt_mockup,
150
+ inputs=[style, color, graphics, text],
151
+ outputs=[result]
152
  )
153
 
154
+ demo.queue().launch(share=True)