Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
import
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
if torch.cuda.is_available():
|
@@ -19,31 +22,39 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
|
28 |
image = pipe(
|
29 |
-
prompt
|
30 |
-
negative_prompt
|
31 |
-
guidance_scale
|
32 |
-
num_inference_steps
|
33 |
-
width
|
34 |
-
height
|
35 |
-
generator
|
36 |
).images[0]
|
37 |
|
38 |
return image
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
examples = [
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
]
|
45 |
|
46 |
-
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
max-width: 520px;
|
@@ -56,91 +67,88 @@ else:
|
|
56 |
power_device = "CPU"
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
-
#
|
63 |
Currently running on {power_device}.
|
64 |
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
76 |
-
run_button = gr.Button("
|
77 |
-
|
78 |
-
result = gr.Image(label="
|
79 |
-
|
80 |
-
with gr.Accordion("
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
label="
|
91 |
-
|
92 |
-
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
gr.Examples(
|
136 |
-
examples
|
137 |
-
inputs
|
138 |
)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
run_button.click(
|
141 |
-
fn
|
142 |
-
inputs
|
143 |
-
outputs
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
import numpy as np
|
5 |
import random
|
6 |
+
import cv2
|
7 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline
|
8 |
|
9 |
+
# Setup the model
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
if torch.cuda.is_available():
|
|
|
22 |
MAX_IMAGE_SIZE = 1024
|
23 |
|
24 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
|
30 |
image = pipe(
|
31 |
+
prompt=prompt,
|
32 |
+
negative_prompt=negative_prompt,
|
33 |
+
guidance_scale=guidance_scale,
|
34 |
+
num_inference_steps=num_inference_steps,
|
35 |
+
width=width,
|
36 |
+
height=height,
|
37 |
+
generator=generator
|
38 |
).images[0]
|
39 |
|
40 |
return image
|
41 |
|
42 |
+
# Generate T-shirt design function
|
43 |
+
def generate_tshirt_design(style, color, graphics, text=None):
|
44 |
+
prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
|
45 |
+
if text:
|
46 |
+
prompt += f", text: {text}"
|
47 |
+
image = pipe(prompt).images[0]
|
48 |
+
return image
|
49 |
+
|
50 |
+
# T-shirt mockup generator with Gradio interface
|
51 |
examples = [
|
52 |
+
["Casual", "White", "Logo: MyBrand", None],
|
53 |
+
["Formal", "Black", "Text: Hello World", "Custom text"],
|
54 |
+
["Sports", "Red", "Graphic: Team logo", None],
|
55 |
]
|
56 |
|
57 |
+
css = """
|
58 |
#col-container {
|
59 |
margin: 0 auto;
|
60 |
max-width: 520px;
|
|
|
67 |
power_device = "CPU"
|
68 |
|
69 |
with gr.Blocks(css=css) as demo:
|
|
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
gr.Markdown(f"""
|
72 |
+
# T-shirt Mockup Generator with Rookus AI
|
73 |
Currently running on {power_device}.
|
74 |
""")
|
75 |
+
|
76 |
with gr.Row():
|
77 |
+
style = gr.Dropdown(
|
78 |
+
label="T-shirt Style",
|
79 |
+
choices=["Casual", "Formal", "Sports"],
|
80 |
+
value="Casual",
|
|
|
|
|
81 |
container=False,
|
82 |
)
|
83 |
+
|
84 |
+
run_button = gr.Button("Generate Mockup", scale=0)
|
85 |
+
|
86 |
+
result = gr.Image(label="Mockup", show_label=False)
|
87 |
+
|
88 |
+
with gr.Accordion("Design Options", open=False):
|
89 |
+
color = gr.Radio(
|
90 |
+
label="T-shirt Color",
|
91 |
+
choices=[
|
92 |
+
"White", "Black", "Blue", "Red", "Green", "Yellow", "Pink", "Purple", "Orange", "Brown",
|
93 |
+
"Gray", "Maroon", "Navy", "Teal", "Lime", "Olive", "Cyan", "Magenta", "Beige", "Turquoise",
|
94 |
+
"Gold", "Silver", "Lavender", "Mint", "Coral", "Indigo"
|
95 |
+
],
|
96 |
+
value="White",
|
97 |
+
)
|
98 |
+
|
99 |
+
graphics = gr.Textbox(
|
100 |
+
label="Graphics/Logo",
|
101 |
+
placeholder="Enter graphics or logo details",
|
102 |
+
visible=True,
|
103 |
)
|
104 |
+
|
105 |
+
text = gr.Textbox(
|
106 |
+
label="Text (optional)",
|
107 |
+
placeholder="Enter optional text",
|
108 |
+
visible=True,
|
|
|
|
|
109 |
)
|
110 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
gr.Examples(
|
112 |
+
examples=examples,
|
113 |
+
inputs=[style, color, graphics, text]
|
114 |
)
|
115 |
|
116 |
+
def generate_tshirt_mockup(style, color, graphics, text=None):
|
117 |
+
# Generate T-shirt design
|
118 |
+
design_image = generate_tshirt_design(style, color, graphics, text)
|
119 |
+
|
120 |
+
# Load blank T-shirt mockup template image
|
121 |
+
mockup_template = Image.open("https://th.bing.com/th/id/OIP.oYpJxkyDYCFdF4GJulkFcQHaFj?rs=1&pid=ImgDetMain")
|
122 |
+
|
123 |
+
# Convert design image and mockup template to numpy arrays
|
124 |
+
design_np = np.array(design_image)
|
125 |
+
mockup_np = np.array(mockup_template)
|
126 |
+
|
127 |
+
# Resize design image to fit mockup (example resizing)
|
128 |
+
design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))
|
129 |
+
|
130 |
+
# Example: Overlay design onto mockup using OpenCV
|
131 |
+
y_offset = mockup_np.shape[0] // 4
|
132 |
+
x_offset = mockup_np.shape[1] // 4
|
133 |
+
y1, y2 = y_offset, y_offset + design_resized.shape[0]
|
134 |
+
x1, x2 = x_offset, x_offset + design_resized.shape[1]
|
135 |
+
|
136 |
+
alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
|
137 |
+
alpha_l = 1.0 - alpha_s
|
138 |
+
|
139 |
+
for c in range(0, 3):
|
140 |
+
mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
|
141 |
+
alpha_l * mockup_np[y1:y2, x1:x2, c])
|
142 |
+
|
143 |
+
# Convert back to PIL image for Gradio output
|
144 |
+
result_image = Image.fromarray(mockup_np)
|
145 |
+
|
146 |
+
return result_image
|
147 |
+
|
148 |
run_button.click(
|
149 |
+
fn=generate_tshirt_mockup,
|
150 |
+
inputs=[style, color, graphics, text],
|
151 |
+
outputs=[result]
|
152 |
)
|
153 |
|
154 |
+
demo.queue().launch(share=True)
|