import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max DEFAULT_IMAGE_SIZE = 512 MAX_IMAGE_SIZE = 1024 # Define the default parts of the prompt DEFAULT_PREFIX = "a single" DEFAULT_SUFFIX = "hanging on the grey wall" CATEGORIES = ["T-shirt", "Sweatshirt", "Shirt", "Hoodie"] EXAMPLES = [ ("T-shirt", "floral pattern"), ("Sweatshirt", "abstract design"), ("Shirt", "geometric shapes"), ("Hoodie", "urban graffiti"), ] def infer(category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): prompt = f"{DEFAULT_PREFIX} {category} with {design} {DEFAULT_SUFFIX}" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return image css = """ #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): category = gr.Dropdown(label="Category", choices=CATEGORIES, value=CATEGORIES[0]) design = gr.Text( label="Design/Graphic", show_label=True, max_lines=1, placeholder="Enter design or graphic", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=50, ) gr.Examples( examples=[(category, design) for category, design in EXAMPLES], inputs=[category, design] ) run_button.click( fn=infer, inputs=[category, design, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()