Spaces:
No application file
No application file
Create app.py (#1)
Browse files- Create app.py (5fa5329467d0c9e2be74453d25000d7e67e55c15)
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import gradio as gr
|
6 |
+
from src.image_prep import canny_from_pil
|
7 |
+
from src.pix2pix_turbo import Pix2Pix_Turbo
|
8 |
+
|
9 |
+
model = Pix2Pix_Turbo("edge_to_image")
|
10 |
+
|
11 |
+
|
12 |
+
def process(input_image, prompt, low_threshold, high_threshold):
|
13 |
+
# resize to be a multiple of 8
|
14 |
+
new_width = input_image.width - input_image.width % 8
|
15 |
+
new_height = input_image.height - input_image.height % 8
|
16 |
+
input_image = input_image.resize((new_width, new_height))
|
17 |
+
canny = canny_from_pil(input_image, low_threshold, high_threshold)
|
18 |
+
with torch.no_grad():
|
19 |
+
c_t = transforms.ToTensor()(canny).unsqueeze(0).cuda()
|
20 |
+
output_image = model(c_t, prompt)
|
21 |
+
output_pil = transforms.ToPILImage()(output_image[0].cpu() * 0.5 + 0.5)
|
22 |
+
# flippy canny values, map all 0s to 1s and 1s to 0s
|
23 |
+
canny_viz = 1 - (np.array(canny) / 255)
|
24 |
+
canny_viz = Image.fromarray((canny_viz * 255).astype(np.uint8))
|
25 |
+
return canny_viz, output_pil
|
26 |
+
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
# load the model
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown("# Pix2pix-Turbo: **Canny Edge -> Image**")
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
input_image = gr.Image(sources="upload", type="pil")
|
35 |
+
prompt = gr.Textbox(label="Prompt")
|
36 |
+
low_threshold = gr.Slider(
|
37 |
+
label="Canny low threshold",
|
38 |
+
minimum=1,
|
39 |
+
maximum=255,
|
40 |
+
value=100,
|
41 |
+
step=10,
|
42 |
+
)
|
43 |
+
high_threshold = gr.Slider(
|
44 |
+
label="Canny high threshold",
|
45 |
+
minimum=1,
|
46 |
+
maximum=255,
|
47 |
+
value=200,
|
48 |
+
step=10,
|
49 |
+
)
|
50 |
+
run_button = gr.Button(value="Run")
|
51 |
+
with gr.Column():
|
52 |
+
result_canny = gr.Image(type="pil")
|
53 |
+
with gr.Column():
|
54 |
+
result_output = gr.Image(type="pil")
|
55 |
+
|
56 |
+
prompt.submit(
|
57 |
+
fn=process,
|
58 |
+
inputs=[input_image, prompt, low_threshold, high_threshold],
|
59 |
+
outputs=[result_canny, result_output],
|
60 |
+
)
|
61 |
+
low_threshold.change(
|
62 |
+
fn=process,
|
63 |
+
inputs=[input_image, prompt, low_threshold, high_threshold],
|
64 |
+
outputs=[result_canny, result_output],
|
65 |
+
)
|
66 |
+
high_threshold.change(
|
67 |
+
fn=process,
|
68 |
+
inputs=[input_image, prompt, low_threshold, high_threshold],
|
69 |
+
outputs=[result_canny, result_output],
|
70 |
+
)
|
71 |
+
run_button.click(
|
72 |
+
fn=process,
|
73 |
+
inputs=[input_image, prompt, low_threshold, high_threshold],
|
74 |
+
outputs=[result_canny, result_output],
|
75 |
+
)
|
76 |
+
|
77 |
+
demo.queue()
|
78 |
+
demo.launch(debug=True, share=False)
|