georgescutelnicu
commited on
Commit
•
6add590
1
Parent(s):
ec64f33
Upload 13 files
Browse files- .gitattributes +1 -0
- add_text.py +54 -0
- app.py +65 -0
- detect_bubbles.py +19 -0
- examples/0.png +3 -0
- examples/ex0.png +0 -0
- fonts/animeace_i.ttf +0 -0
- fonts/ariali.ttf +0 -0
- fonts/mangati.ttf +0 -0
- model.pt +3 -0
- packages.txt +1 -0
- process_bubble.py +27 -0
- requirements +7 -0
- translator.py +41 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/0.png filter=lfs diff=lfs merge=lfs -text
|
add_text.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
import numpy as np
|
3 |
+
import textwrap
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
def add_text(image, text, font_path, bubble_contour):
|
8 |
+
"""
|
9 |
+
Add text inside a speech bubble contour.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
image (numpy.ndarray): Processed bubble image (cv2 format - BGR).
|
13 |
+
text (str): Text to be placed inside the speech bubble.
|
14 |
+
font_path (str): Font path.
|
15 |
+
bubble_contour (numpy.ndarray): Contour of the detected speech bubble.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
numpy.ndarray: Image with text placed inside the speech bubble.
|
19 |
+
"""
|
20 |
+
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
21 |
+
draw = ImageDraw.Draw(pil_image)
|
22 |
+
|
23 |
+
x, y, w, h = cv2.boundingRect(bubble_contour)
|
24 |
+
|
25 |
+
wrapped_text = textwrap.fill(text, width=int(w * 0.1), break_long_words=True)
|
26 |
+
|
27 |
+
line_height = 12
|
28 |
+
font_size = 10
|
29 |
+
font = ImageFont.truetype(font_path, size=font_size)
|
30 |
+
|
31 |
+
lines = wrapped_text.split('\n')
|
32 |
+
total_text_height = (len(lines)) * line_height
|
33 |
+
|
34 |
+
if total_text_height > h:
|
35 |
+
font_size *= (h / total_text_height)
|
36 |
+
line_height = 10
|
37 |
+
total_text_height = (len(lines)) * line_height
|
38 |
+
|
39 |
+
# Vertical centering
|
40 |
+
text_y = y + (h - total_text_height) // 2
|
41 |
+
|
42 |
+
for line in lines:
|
43 |
+
text_length = draw.textlength(line, font=font)
|
44 |
+
|
45 |
+
# Horizontal centering
|
46 |
+
text_x = x + (w - text_length) // 2
|
47 |
+
|
48 |
+
draw.text((text_x, text_y), line, font=font, fill=(0, 0, 0))
|
49 |
+
|
50 |
+
text_y += line_height
|
51 |
+
|
52 |
+
image[:, :, :] = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
53 |
+
|
54 |
+
return image
|
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from add_text import add_text
|
2 |
+
from detect_bubbles import detect_bubbles
|
3 |
+
from process_bubble import process_bubble
|
4 |
+
from translator import MangaTranslator
|
5 |
+
from ultralytics import YOLO
|
6 |
+
from manga_ocr import MangaOcr
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
MODEL = "model.pt"
|
14 |
+
EXAMPLE_LIST = [["examples/0.png"],
|
15 |
+
["examples/ex0.png"]]
|
16 |
+
TITLE = "Manga Translator"
|
17 |
+
DESCRIPTION = "Translate text in manga bubbles!"
|
18 |
+
|
19 |
+
|
20 |
+
def predict(img, translation_method="google", font="fonts/animeace_i.ttf"):
|
21 |
+
results = detect_bubbles(MODEL, img)
|
22 |
+
|
23 |
+
manga_translator = MangaTranslator()
|
24 |
+
mocr = MangaOcr()
|
25 |
+
|
26 |
+
image = np.array(img)
|
27 |
+
|
28 |
+
for result in results:
|
29 |
+
x1, y1, x2, y2, score, class_id = result
|
30 |
+
|
31 |
+
detected_image = image[int(y1):int(y2), int(x1):int(x2)]
|
32 |
+
|
33 |
+
im = Image.fromarray(np.uint8((detected_image)*255))
|
34 |
+
text = mocr(im)
|
35 |
+
|
36 |
+
detected_image, cont = process_bubble(detected_image)
|
37 |
+
|
38 |
+
text_translated = manga_translator.translate(text,
|
39 |
+
method=translation_method)
|
40 |
+
|
41 |
+
image_with_text = add_text(detected_image, text_translated, font, cont)
|
42 |
+
|
43 |
+
return image
|
44 |
+
|
45 |
+
demo = gr.Interface(fn=predict,
|
46 |
+
inputs=["image",
|
47 |
+
gr.Dropdown([("Google", "google"),
|
48 |
+
("Helsinki-NLP's opus-mt-ja-en model",
|
49 |
+
"hf")],
|
50 |
+
label="Translation Method",
|
51 |
+
value="google"),
|
52 |
+
gr.Dropdown([("animeace_i", ("fonts/animeace_i.ttf")),
|
53 |
+
("mangati", "fonts/mangati.ttf"),
|
54 |
+
("ariali", "fonts/ariali.ttf")],
|
55 |
+
label="Text Font",
|
56 |
+
value="fonts/animeace_i.ttf")
|
57 |
+
],
|
58 |
+
outputs=[gr.Image()],
|
59 |
+
examples=EXAMPLE_LIST,
|
60 |
+
title=TITLE,
|
61 |
+
description=DESCRIPTION)
|
62 |
+
|
63 |
+
|
64 |
+
demo.launch(debug=False,
|
65 |
+
share=False)
|
detect_bubbles.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
|
3 |
+
|
4 |
+
def detect_bubbles(model_path, image_path):
|
5 |
+
"""
|
6 |
+
Detects bubbles in an image using a YOLOv8 model.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
model_path (str): The file path to the YOLO model.
|
10 |
+
image_path (str): The file path to the input image.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
list: A list containing the coordinates, score and class_id of
|
14 |
+
the detected bubbles.
|
15 |
+
"""
|
16 |
+
model = YOLO(model_path)
|
17 |
+
bubbles = model(image_path)[0]
|
18 |
+
|
19 |
+
return bubbles.boxes.data.tolist()
|
examples/0.png
ADDED
Git LFS Details
|
examples/ex0.png
ADDED
fonts/animeace_i.ttf
ADDED
Binary file (28.8 kB). View file
|
|
fonts/ariali.ttf
ADDED
Binary file (717 kB). View file
|
|
fonts/mangati.ttf
ADDED
Binary file (30.4 kB). View file
|
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f1a64e4e4c0dd30b361eb332866dea0f52eab9acb288b9ffdcb2622cb5d1cdb
|
3 |
+
size 6234585
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
process_bubble.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def process_bubble(image):
|
6 |
+
"""
|
7 |
+
Processes the speech bubble in the given image, making its contents white.
|
8 |
+
|
9 |
+
Parameters:
|
10 |
+
- image (numpy.ndarray): Input image.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
- image (numpy.ndarray): Image with the speech bubble content set to white.
|
14 |
+
- largest_contour (numpy.ndarray): Contour of the detected speech bubble.
|
15 |
+
"""
|
16 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
17 |
+
_, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY)
|
18 |
+
|
19 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
20 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
21 |
+
|
22 |
+
mask = np.zeros_like(gray)
|
23 |
+
cv2.drawContours(mask, [largest_contour], -1, 255, cv2.FILLED)
|
24 |
+
|
25 |
+
image[mask == 255] = (255, 255, 255)
|
26 |
+
|
27 |
+
return image, largest_contour
|
requirements
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
deep-translator==1.11.4
|
2 |
+
huggingface-hub==0.22.2
|
3 |
+
manga-ocr==0.1.11
|
4 |
+
numpy==1.24.2
|
5 |
+
opencv-python==4.9.0.80
|
6 |
+
pillow==10.3.0
|
7 |
+
ultralytics==8.1.43
|
translator.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from deep_translator import GoogleTranslator
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
|
5 |
+
class MangaTranslator:
|
6 |
+
def __init__(self):
|
7 |
+
self.target = "en"
|
8 |
+
self.source = "ja"
|
9 |
+
|
10 |
+
def translate(self, text, method="google"):
|
11 |
+
"""
|
12 |
+
Translates the given text to the target language using the specified method.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
text (str): The text to be translated.
|
16 |
+
method (str):'google' for Google Translator,
|
17 |
+
'hf' for Helsinki-NLP's opus-mt-ja-en model (HF pipeline)
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: The translated text.
|
21 |
+
"""
|
22 |
+
if method == "hf":
|
23 |
+
return self._translate_with_hf(self._preprocess_text(text))
|
24 |
+
elif method == "google":
|
25 |
+
return self._translate_with_google(self._preprocess_text(text))
|
26 |
+
else:
|
27 |
+
raise ValueError("Invalid translation method.")
|
28 |
+
|
29 |
+
def _translate_with_google(self, text):
|
30 |
+
translator = GoogleTranslator(source=self.source, target=self.target)
|
31 |
+
translated_text = translator.translate(text)
|
32 |
+
return translated_text
|
33 |
+
|
34 |
+
def _translate_with_hf(self, text):
|
35 |
+
pipe = pipeline("translation", model=f"Helsinki-NLP/opus-mt-ja-en")
|
36 |
+
translated_text = pipe(text)[0]["translation_text"]
|
37 |
+
return translated_text
|
38 |
+
|
39 |
+
def _preprocess_text(self, text):
|
40 |
+
preprocessed_text = text.replace(".", ".")
|
41 |
+
return preprocessed_text
|