Spaces:
Running
on
A10G
Running
on
A10G
File size: 14,133 Bytes
0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd 0223854 24081dd c4e73e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import EulerDiscreteScheduler, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5"
inference_config_path = "configs/inference/inference.yaml"
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
examples = [
# 1-ToonYou
[
"toonyou_beta3.safetensors",
"mm_sd_v14.ckpt",
"masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes",
"worst quality, low quality, nsfw, logo",
512, 512, "13204175718326964000"
],
# 2-Lyriel
[
"lyriel_v16.safetensors",
"mm_sd_v15.ckpt",
"A forbidden castle high up in the mountains, pixel art, intricate details2, hdr, intricate details, hyperdetailed5, natural skin texture, hyperrealism, soft light, sharp, game art, key visual, surreal",
"3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular",
512, 512, "6681501646976930000"
],
# 3-RCNZ
[
"rcnzCartoon3d_v10.safetensors",
"mm_sd_v14.ckpt",
"Jane Eyre with headphones, natural skin texture,4mm,k textures, soft cinematic light, adobe lightroom, photolab, hdr, intricate, elegant, highly detailed, sharp focus, cinematic look, soothing tones, insane details, intricate details, hyperdetailed, low contrast, soft cinematic light, dim colors, exposure blend, hdr, faded",
"deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
512, 512, "2416282124261060"
],
# 4-MajicMix
[
"majicmixRealistic_v5Preview.safetensors",
"mm_sd_v14.ckpt",
"1girl, offshoulder, light smile, shiny skin best quality, masterpiece, photorealistic",
"bad hand, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, watermark, moles",
512, 512, "7132772652786303"
],
# 5-RealisticVision
[
"realisticVisionV40_v20Novae.safetensors",
"mm_sd_v15.ckpt",
"photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
"blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation",
512, 512, "1490157606650685400"
]
]
# clean unrelated ckpts
ckpts = [
"realisticVisionV40_v20Novae.safetensors",
"majicmixRealistic_v5Preview.safetensors",
"rcnzCartoon3d_v10.safetensors",
"lyriel_v16.safetensors",
"toonyou_beta3.safetensors"
]
for path in glob(os.path.join("models", "DreamBooth_LoRA", "*.safetensors")):
for ckpt in ckpts:
if path.endswith(ckpt): break
else:
print(f"### Cleaning {path} ...")
os.system(f"rm -rf {path}")
# os.system(f"rm -rf {os.path.join('models', 'DreamBooth_LoRA', '*.safetensors')}")
# os.system(f"bash download_bashscripts/1-ToonYou.sh")
# os.system(f"bash download_bashscripts/2-Lyriel.sh")
# os.system(f"bash download_bashscripts/3-RcnzCartoon.sh")
# os.system(f"bash download_bashscripts/4-MajicMix.sh")
# os.system(f"bash download_bashscripts/5-RealisticVision.sh")
# clean Grdio cache
print(f"### Cleaning cached examples ...")
os.system(f"rm -rf gradio_cached_examples/")
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples")
os.makedirs(self.savedir, exist_ok=True)
self.base_model_list = []
self.motion_module_list = []
self.selected_base_model = None
self.selected_motion_module = None
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.inference_config = OmegaConf.load(inference_config_path)
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
self.update_base_model(self.base_model_list[0])
self.update_motion_module(self.motion_module_list[0])
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
base_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.base_model_list = [os.path.basename(p) for p in base_model_list]
def update_base_model(self, base_model_dropdown):
self.selected_base_model = base_model_dropdown
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
self.selected_motion_module = motion_module_dropdown
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown.update()
def animate(
self,
base_model_dropdown,
motion_module_dropdown,
prompt_textbox,
negative_prompt_textbox,
width_slider,
height_slider,
seed_textbox,
):
if self.selected_base_model != base_model_dropdown: self.update_base_model(base_model_dropdown)
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown)
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if int(seed_textbox) > 0: seed = int(seed_textbox)
else: seed = random.randint(1, 1e16)
torch.manual_seed(int(seed))
assert seed == torch.initial_seed()
print(f"### seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = 25,
guidance_scale = 8.,
width = width_slider,
height = height_slider,
video_length = 16,
generator = generator,
).videos
save_sample_path = os.path.join(self.savedir, f"sample.mp4")
save_videos_grid(sample, save_sample_path)
json_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"width": width_slider,
"height": height_slider,
"seed": seed,
"base_model": base_model_dropdown,
"motion_module": motion_module_dropdown,
}
return gr.Video.update(value=save_sample_path), gr.Json.update(value=json_config)
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai (*Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2307.04725) | [Project Page](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/)
"""
)
gr.Markdown(
"""
### Quick Start
1. Select desired `Base DreamBooth Model`.
2. Select `Motion Module` from `mm_sd_v14.ckpt` and `mm_sd_v15.ckpt`. We recommend trying both of them for the best results.
3. Provide `Prompt` and `Negative Prompt` for each model. You are encouraged to refer to each model's webpage on CivitAI to learn how to write prompts for them. Below are the DreamBooth models in this demo. Click to visit their homepage.
- [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
- [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel)
- [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009)
- [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068)
- [`realisticVisionV20_v20.safetensors`](https://civitai.com/models/4201?modelVersionId=29460)
4. Click `Generate`, wait for ~1 min, and enjoy.
"""
)
with gr.Row():
with gr.Column():
base_model_dropdown = gr.Dropdown( label="Base DreamBooth Model", choices=controller.base_model_list, value=controller.base_model_list[0], interactive=True )
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True )
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
prompt_textbox = gr.Textbox( label="Prompt", lines=3 )
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
with gr.Accordion("Advance", open=False):
with gr.Row():
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
with gr.Row():
seed_textbox = gr.Textbox( label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button( value="Generate", variant='primary' )
with gr.Column():
result_video = gr.Video( label="Generated Animation", interactive=False )
json_config = gr.Json( label="Config", value=None )
inputs = [base_model_dropdown, motion_module_dropdown, prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox]
outputs = [result_video, json_config]
generate_button.click( fn=controller.animate, inputs=inputs, outputs=outputs )
gr.Examples( fn=controller.animate, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True )
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch()
|