import streamlit as st from huggingface_hub import list_models from datetime import date, timedelta, datetime, timezone import pandas as pd st.set_page_config(layout="wide") # @st.cache_resource # def get_model_list(): # return [model for model in list(list_models(author="hahunavth", filter="emofs2"))] def get_ckpt_list(model): files = model.siblings file_names = [file.rfilename for file in files if "pytorch_model" in file.rfilename] return file_names with st.form("my_form"): _author = st.text_input("Author", "hahunavth") _filter = st.text_input("Slug", "emofs2") submit = st.form_submit_button("Submit") models = list( list_models(author=_author, filter=_filter, sort="last_modified", direction=-1) ) _models = [] now = datetime.now(timezone.utc) for model in models: ckpts = get_ckpt_list(model) ckpts_step = [ckpt.replace("pytorch_model.", "").replace(".bin", "") for ckpt in ckpts] ckpts_step = [int(ckpt) for ckpt in ckpts_step if ckpt.isdigit()] ckpts_step.sort() last_ckpt = "{:,}".format(ckpts_step[-1]) if ckpts_step else None diff = None if model.last_modified: now = now.replace(microsecond=0) last_modified = model.last_modified.replace(microsecond=0) diff = now - last_modified diff = str(diff) step = model.id.replace('hahunavth/emofs2-exp', '').split('_')[0] _models.append( { "id": model.id, "last_modified": diff, "ckpt_list": last_ckpt, "huggingface": f'https://huggingface.co/{model.id}/tree/main' if model.id else None, "notebook": f"https://www.kaggle.com/code/hahunavth/ess-vlsp2023-train-{step}" if model.id else None, "kaggle": f"/kaggle/repo/vlsp2023-ess/config/exp{step}", } ) df = pd.DataFrame(_models) st.dataframe( df, column_config={ "huggingface": st.column_config.LinkColumn(), "notebook": st.column_config.LinkColumn(), }, use_container_width=True )