Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,093 Bytes
2ec72fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import argparse
import logging
import os
import time
import numpy as np
import rembg
import torch
from PIL import Image
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, save_video
class Timer:
def __init__(self):
self.items = {}
self.time_scale = 1000.0 # ms
self.time_unit = "ms"
def start(self, name: str) -> None:
if torch.cuda.is_available():
torch.cuda.synchronize()
self.items[name] = time.time()
logging.info(f"{name} ...")
def end(self, name: str) -> float:
if name not in self.items:
return
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = self.items.pop(name)
delta = time.time() - start_time
t = delta * self.time_scale
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.")
timer = Timer()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
parser = argparse.ArgumentParser()
parser.add_argument("image", type=str, nargs="+", help="Path to input image(s).")
parser.add_argument(
"--device",
default="cuda:0",
type=str,
help="Device to use. If no CUDA-compatible device is found, will fallback to 'cpu'. Default: 'cuda:0'",
)
parser.add_argument(
"--pretrained-model-name-or-path",
default="stabilityai/TripoSR",
type=str,
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/TripoSR'",
)
parser.add_argument(
"--chunk-size",
default=8192,
type=int,
help="Evaluation chunk size for surface extraction and rendering. Smaller chunk size reduces VRAM usage but increases computation time. 0 for no chunking. Default: 8192",
)
parser.add_argument(
"--mc-resolution",
default=256,
type=int,
help="Marching cubes grid resolution. Default: 256"
)
parser.add_argument(
"--no-remove-bg",
action="store_true",
help="If specified, the background will NOT be automatically removed from the input image, and the input image should be an RGB image with gray background and properly-sized foreground. Default: false",
)
parser.add_argument(
"--foreground-ratio",
default=0.85,
type=float,
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
)
parser.add_argument(
"--output-dir",
default="output/",
type=str,
help="Output directory to save the results. Default: 'output/'",
)
parser.add_argument(
"--model-save-format",
default="obj",
type=str,
choices=["obj", "glb"],
help="Format to save the extracted mesh. Default: 'obj'",
)
parser.add_argument(
"--render",
action="store_true",
help="If specified, save a NeRF-rendered video. Default: false",
)
args = parser.parse_args()
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
device = args.device
if not torch.cuda.is_available():
device = "cpu"
timer.start("Initializing model")
model = TSR.from_pretrained(
args.pretrained_model_name_or_path,
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(args.chunk_size)
model.to(device)
timer.end("Initializing model")
timer.start("Processing images")
images = []
if args.no_remove_bg:
rembg_session = None
else:
rembg_session = rembg.new_session()
for i, image_path in enumerate(args.image):
if args.no_remove_bg:
image = np.array(Image.open(image_path).convert("RGB"))
else:
image = remove_background(Image.open(image_path), rembg_session)
image = resize_foreground(image, args.foreground_ratio)
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
if not os.path.exists(os.path.join(output_dir, str(i))):
os.makedirs(os.path.join(output_dir, str(i)))
image.save(os.path.join(output_dir, str(i), f"input.png"))
images.append(image)
timer.end("Processing images")
for i, image in enumerate(images):
logging.info(f"Running image {i + 1}/{len(images)} ...")
timer.start("Running model")
with torch.no_grad():
scene_codes = model([image], device=device)
timer.end("Running model")
if args.render:
timer.start("Rendering")
render_images = model.render(scene_codes, n_views=30, return_type="pil")
for ri, render_image in enumerate(render_images[0]):
render_image.save(os.path.join(output_dir, str(i), f"render_{ri:03d}.png"))
save_video(
render_images[0], os.path.join(output_dir, str(i), f"render.mp4"), fps=30
)
timer.end("Rendering")
timer.start("Exporting mesh")
meshes = model.extract_mesh(scene_codes, resolution=args.mc_resolution)
meshes[0].export(os.path.join(output_dir, str(i), f"mesh.{args.model_save_format}"))
timer.end("Exporting mesh")
|