Hritik
remove overflow
04476a9
import os
import gradio as gr
from datasets import load_dataset
videocon_human = load_dataset('csv', data_files='videocon_human.csv')
print(videocon_human)
data_human = videocon_human['train']
print(data_human[0])
df = data_human.to_pandas()
cols = list(df.columns)
df = df.reindex(columns=cols)
LINES_NUMBER = 20
def display_df():
df_images = df.head(LINES_NUMBER)
return df_images
def display_next(dataframe, end):
start = int(end or len(dataframe))
end = int(start) + int(LINES_NUMBER)
global df
if end >= len(df) - 1:
start = 0
end = LINES_NUMBER
df = df.sample(frac=1)
print(f"Shuffle")
df_images = df.iloc[start:end]
assert len(df_images) == LINES_NUMBER
return df_images, end
initial_dataframe = display_df()
# Gradio Blocks
with gr.Blocks() as demo:
gr.Markdown("<h1><center>VideoCon-Human Dataset Viewer</center></h1>")
with gr.Row():
num_end = gr.Number(visible=False)
b1 = gr.Button("Get Initial dataframe")
b2 = gr.Button("Next Rows")
with gr.Row():
out_dataframe = gr.Dataframe(initial_dataframe, wrap=True, interactive=False, datatype = ['str', 'str', 'str', 'str', 'str'])
b1.click(fn=display_df, outputs=out_dataframe, api_name="initial_dataframe")
b2.click(fn=display_next, inputs=[out_dataframe, num_end], outputs=[out_dataframe, num_end],
api_name="next_rows")
demo.launch(debug=True, show_error=True)