henrykohl commited on
Commit
61c166e
1 Parent(s): 91b5ec8

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb9e3a8c694c7a5302fdae148c2f7b46ce7fd77a09a8aa727fe0fdc50a802d3c
3
+ size 31313869
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup (步驟1) ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ['pizza', 'steak', 'sushi']
12
+
13
+ ### 2. Model and transforms perparation (步驟2) ###
14
+ """Create EffNetB2 model: 獲得模型定義與變換"""
15
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
16
+ num_classes=3) # (len(class_names) would also work)
17
+
18
+ # Load save weights
19
+ """加載權重到模型"""
20
+ effnetb2.load_state_dict(
21
+ torch.load(
22
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
23
+ map_location=torch.device("cpu") # load the model to the CPU
24
+ )
25
+ )
26
+
27
+ ### 3. Predict function (步驟3) ###
28
+ """Create predict function: 建立預測函數 (from 7.2)"""
29
+ def predict(img) -> Tuple[Dict, float]:
30
+ # Start a timer
31
+ start_time = timer()
32
+
33
+ # Transform the input image for use with EffNetB2
34
+ """Transform the target image and add a batch dimension"""
35
+ img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index
36
+
37
+ # Put model into eval mode, make prediction (Put model into evaluation mode and turn on inference mode)
38
+ effnetb2.eval()
39
+ with torch.inference_mode():
40
+ # Pass transformed image through the model and turn the prediction logits into probaiblities
41
+ """Pass the transformed image through the model and turn the prediction logits into prediction probabilities"""
42
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
43
+
44
+ # Create a prediction label and prediction probability dictionary (for each prediction class (this is the required format for Gradio's output parameter))
45
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
46
+
47
+ # Calculate pred time (prediction time)
48
+ end_time = timer()
49
+ pred_time = round(end_time - start_time, 4)
50
+
51
+ # Return pred dict and pred time (the prediction dictionary and prediction time)
52
+ return pred_labels_and_probs, pred_time
53
+
54
+ ### 4. Gradio app (步驟4) ###
55
+ """(from 7.4)"""
56
+ # Create title, description and article (strings)
57
+ title = "FoodVision Mini 🍕🥩🍣"
58
+ description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
59
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)."
60
+
61
+ # Create example list (from "examples/" directory)
62
+ """(based on 8.3)"""
63
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
64
+
65
+ # Create the Gradio demo
66
+ demo = gr.Interface(fn=predict, # maps inputs to outputs #( mapping function from input to output)
67
+ inputs=gr.Image(type="pil"), #( what are the inputs?)
68
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), #( what are the outputs?)
69
+ gr.Number(label="Prediction time (s)")], #( our fn has two outputs, therefore we have two outputs)
70
+ # (Create examples list from "examples/" directory)
71
+ examples=example_list,
72
+ title=title,
73
+ description=description,
74
+ article=article)
75
+
76
+ # Launch the demo!
77
+ demo.launch()
examples/2582289.jpg ADDED
examples/3622237.jpg ADDED
examples/592799.jpg ADDED
model.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+ def create_effnetb2_model(num_classes:int=3, # default output classes = 3 (pizza, steak, sushi)
7
+ seed:int=42):
8
+ """Creates an EfficientNetB2 feature extractor model and transforms.
9
+
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value. Defaults to 42.
14
+
15
+ Returns:
16
+ model (torch.nn.Module): EffNetB2 feature extractor model.
17
+ transforms (torchvision.transforms): EffNetB2 image transforms.
18
+ """
19
+ # 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
20
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
21
+ transforms = weights.transforms()
22
+ model = torchvision.models.efficientnet_b2(weights=weights)
23
+
24
+ # 4. Freeze all layers in the base model
25
+ for param in model.parameters():
26
+ param.requires_grad = False
27
+
28
+ # 5. Change classifier head with random seed for reproducibility
29
+ torch.manual_seed(seed)
30
+ model.classifier = nn.Sequential(
31
+ nn.Dropout(p=0.3, inplace=True),
32
+ nn.Linear(in_features=1408, out_features=num_classes)
33
+ )
34
+
35
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.45.0