# import gradio as gr import gradio # import lmdb # import base64 # import io # import random # import time import json import copy # import sqlite3 from urllib.parse import urljoin import openai DEFAULT_PROMPT = [ ["system", "You(assistant) are a helpful AI assistant."], ] # def get_settings(old_state): # db_path = './my_app_state' # env = lmdb.open(db_path, max_dbs=2*1024*1024) # # print(env.stat()) # txn = env.begin() # saved_api_key = txn.get(key=b'api_key').decode('utf-8') or '' # txn.commit() # env.close() # new_state = copy.deepcopy(old_state) or {} # new_state['api_key'] = saved_api_key # return new_state, saved_api_key # def save_settings(old_state, api_key_text): # db_path = './my_app_state' # env = lmdb.open(db_path, max_dbs=2*1024*1024) # # print(env.stat()) # txn = env.begin(write=True) # txn.put(key=b'api_key', value=api_key_text.encode('utf-8')) # # ζδΊ€δΊ‹εŠ‘ # txn.commit() # return get_settings(old_state) def on_click_send_btn( old_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, chat_model, temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias, ): print('\n\n\n\n\n') print(prompt_table) prompt_table = prompt_table or [] chat_log = chat_log or [] chat_log_md = '' if chat_use_prompt: chat_log_md += '
(prompt)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) chat_log_md += '\n---\n' if True: chat_log_md += '
(history)
\n\n' if chat_use_history else '
(not used history)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) chat_log_md += '\n---\n' # if chat_input=='': # return old_state, chat_log, chat_log_md, None, None, chat_input print('\n') print(chat_input) print('') try: logit_bias_json = json.dumps(logit_bias) if logit_bias else None except: return old_state, chat_log, chat_log_md, None, None, chat_input new_state = copy.deepcopy(old_state) or {} req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else [] if chat_use_history: for hh in (chat_log or []): req_hist.append(hh) if chat_input and chat_input!="": req_hist.append([(chat_input_role or 'user'), chat_input]) openai.api_key = api_key_text props = { 'model': chat_model, 'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)], 'temperature': temperature, 'top_p': top_p, 'n': choices_num, 'stream': stream, 'presence_penalty': presence_penalty, 'frequency_penalty': frequency_penalty, } if max_tokens>0: props['max_tokens'] = max_tokens if logit_bias_json is not None: props['logit_bias'] = logit_bias_json props_json = json.dumps(props) try: completion = openai.ChatCompletion.create(**props) print('') print(completion.choices) the_response_role = completion.choices[0].message.role the_response = completion.choices[0].message.content print(the_response) print('') chat_last_resp = json.dumps(completion.__dict__) chat_last_resp_dict = json.loads(chat_last_resp) chat_last_resp_dict['api_key'] = "hidden by UI" chat_last_resp_dict['organization'] = "hidden by UI" chat_last_resp = json.dumps(chat_last_resp_dict) chat_log_md = '' if chat_use_prompt: chat_log_md += '
(prompt)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) chat_log_md += '\n---\n' if True: chat_log_md += '
(history)
\n\n' if chat_use_history else '
(not used history)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) chat_log_md += '\n---\n' if chat_input and chat_input!="": chat_log.append([(chat_input_role or 'user'), chat_input]) chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n" chat_log.append([the_response_role, the_response]) chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n" return new_state, chat_log, chat_log_md, chat_last_resp, props_json, '' except Exception as error: print(error) chat_log_md = '' if chat_use_prompt: chat_log_md += '
(prompt)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) chat_log_md += '\n---\n' if True: chat_log_md += '
(history)
\n\n' if chat_use_history else '
(not used history)
\n\n' chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) chat_log_md += '\n---\n' # chat_log_md = '' # chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else '' # chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)]) chat_log_md += "\n" chat_log_md += str(error) return new_state, chat_log, chat_log_md, None, props_json, chat_input def clear_history(): return [], "" css = """ .table-wrap .cell-wrap input {min-width:80%} #api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s} #api-key-textbox textarea:focus {filter:none} """ with gradio.Blocks(title="ChatGPT", css=css) as demo: global_state = gradio.State(value={}) # https://gradio.app/docs # https://platform.openai.com/docs/api-reference/chat/create with gradio.Tab("ChatGPT"): with gradio.Row(): with gradio.Column(scale=10): gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.") api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox") with gradio.Row(): with gradio.Column(scale=2): api_key_refresh_btn = gradio.Button("πŸ”„ Load from browser storage") api_key_refresh_btn.click( # get_settings, None, inputs=[global_state], outputs=[global_state, api_key_text], api_name="load-settings", _js="""(global_state, api_key_text)=>{ global_state=(global_state??{}); global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]'); return [global_state, global_state['api_key_text']]; }""", ) with gradio.Column(scale=2): api_key_save_btn = gradio.Button("πŸ’Ύ Save to browser storage") api_key_save_btn.click( # save_settings, None, inputs=[global_state, api_key_text], outputs=[global_state, api_key_text], api_name="save-settings", _js="""(global_state, api_key_text)=>{ localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text); global_state=(global_state??{}); global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]'); return [global_state, global_state['api_key_text']]; }""", ) with gradio.Row(): with gradio.Column(scale=10): with gradio.Box(): prompt_table = gradio.Dataframe( type='array', label='Prompt', col_count=(2, 'fixed'), max_cols=2, value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True, ) gradio.Markdown("The Table above is editable. The content will be added to the beginning of the conversation (if you check 'send with prompt' as `√`). See https://platform.openai.com/docs/guides/chat/introduction .") with gradio.Row(): with gradio.Column(scale=4): with gradio.Box(): gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .") chat_model = gradio.Dropdown(label="model", choices=[ "gpt-3.5-turbo", "gpt-3.5-turbo-0301", "gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", ], value="gpt-3.5-turbo") chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2) chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1) chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20) chat_stream = gradio.Checkbox(label="stream", value=False, visible=False) chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096) chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2) chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2) chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False) pass with gradio.Column(scale=8): with gradio.Row(): with gradio.Column(scale=10): chat_log = gradio.State() with gradio.Box(): chat_log_box = gradio.Markdown(label='chat history') chat_input_role = gradio.Textbox(lines=1, label='role', value='user') chat_input = gradio.Textbox(lines=4, label='input') with gradio.Row(): chat_clear_history_btn = gradio.Button("clear history") chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box]) chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True) chat_use_history = gradio.Checkbox(label='send with history', value=True) chat_send_btn = gradio.Button("send") pass with gradio.Row(): chat_last_req = gradio.JSON(label='last request') chat_last_resp = gradio.JSON(label='last response') chat_send_btn.click( on_click_send_btn, inputs=[ global_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, chat_model, chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias, ], outputs=[global_state, chat_log, chat_log_box, chat_last_resp, chat_last_req, chat_input], api_name="click-send-btn", ) pass with gradio.Tab("Settings"): gradio.Markdown('Currently nothing.') pass if __name__ == "__main__": demo.queue(concurrency_count=20).launch()