Spaces:
Runtime error
Runtime error
import gradio as gr | |
import re | |
import requests | |
import json | |
import os | |
title = "BLOOM" | |
description = "Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
API_URL = "https://hfbloom.ngrok.io/generate" | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface") | |
examples = [ | |
['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', 8, 0, 0, 0.1, 0, 0.9, False], | |
['def quicksort(l):', 8, 0, 0, 0.1, 0, 0.9, False], | |
['Q: ¿Cómo te llamas? A: What is your name? Q: ¿Qué edad tienes? A: How old are you? Q: ¿Dónde vives?', 8, 0, 0, 0.1, 0, 0.9, False] | |
] | |
def safe_text(text): | |
text = text.replace('%', '\\%25') | |
text = text.replace('#', '\\%23') | |
text = text.replace('+', '\\%2B') | |
text = text.replace('*', '\\%2A') | |
text = text.replace('&', '\\%26') | |
text = re.sub(r"([$_*\[\]()~`>\#\+\-=|\.!{}])", r"\\\1", text) | |
return f"<pre>{text}</pre>" | |
def query(payload): | |
print(payload) | |
response = requests.request("POST", API_URL, json=payload) | |
print(response) | |
return json.loads(response.content.decode("utf-8")) | |
def inference(input_sentence, max_length, no_repeat_ngram_size, num_beams, temperature,top_k, top_p, greedy_decoding, seed=42): | |
top_k = None if top_k == 0 else top_k | |
do_sample = False if num_beams > 0 else not greedy_decoding | |
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams | |
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size | |
top_p = None if num_beams else top_p | |
early_stopping = None if num_beams is None else num_beams > 0 | |
payload = {"inputs": input_sentence, | |
"parameters": {"max_new_tokens": max_length, "top_k": top_k, "top_p": top_p, "temperature": temperature, | |
"do_sample": do_sample, "seed": seed, "early_stopping":early_stopping, "no_repeat_ngram_size":no_repeat_ngram_size, "num_beams":num_beams}} | |
data = query( | |
payload | |
) | |
print(data) | |
return data[0]["generated_text"] | |
gr.Interface( | |
inference, | |
[ | |
gr.inputs.Textbox(label="Input"), | |
gr.inputs.Slider(1, 64, default=8, step=1, label="Tokens to generate"), | |
gr.inputs.Slider(1, 10, default=2, step=1, label="No repeat N gram"), | |
gr.inputs.Slider(0, 10, default=5, step=1, label="Num beams"), | |
gr.inputs.Slider(0.0, 1.0, default=0.1, step=0.05, label="Temperature"), | |
gr.inputs.Slider(0, 64, default=0, step=1, label="Top K"), | |
gr.inputs.Slider(0.0, 10, default=0.9, step=0.05, label="Top P"), | |
gr.inputs.Checkbox(False, label="Greedy decoding"), | |
], | |
gr.outputs.Textbox(label="Output"), | |
examples=examples, | |
# article=article, | |
title=title, | |
description=description, | |
flagging_callback=hf_writer, | |
allow_flagging=True, | |
).launch() |