bloom_demo / app.py
Younes Belkada
Update app.py
390933b
raw
history blame
3.2 kB
import gradio as gr
import re
import requests
import json
import os
title = "BLOOM"
description = "Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
API_URL = "https://hfbloom.ngrok.io/generate"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "huggingface/bloom_internal_prompts", organization="huggingface")
examples = [
['A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', 8, 0, 0, 0.1, 0, 0.9, False],
['def quicksort(l):', 8, 0, 0, 0.1, 0, 0.9, False],
['Q: ¿Cómo te llamas? A: What is your name? Q: ¿Qué edad tienes? A: How old are you? Q: ¿Dónde vives?', 8, 0, 0, 0.1, 0, 0.9, False]
]
def safe_text(text):
text = text.replace('%', '\\%25')
text = text.replace('#', '\\%23')
text = text.replace('+', '\\%2B')
text = text.replace('*', '\\%2A')
text = text.replace('&', '\\%26')
text = re.sub(r"([$_*\[\]()~`>\#\+\-=|\.!{}])", r"\\\1", text)
return f"<pre>{text}</pre>"
def query(payload):
print(payload)
response = requests.request("POST", API_URL, json=payload)
print(response)
return json.loads(response.content.decode("utf-8"))
def inference(input_sentence, max_length, no_repeat_ngram_size, num_beams, temperature,top_k, top_p, greedy_decoding, seed=42):
top_k = None if top_k == 0 else top_k
do_sample = False if num_beams > 0 else not greedy_decoding
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
top_p = None if num_beams else top_p
early_stopping = None if num_beams is None else num_beams > 0
payload = {"inputs": input_sentence,
"parameters": {"max_new_tokens": max_length, "top_k": top_k, "top_p": top_p, "temperature": temperature,
"do_sample": do_sample, "seed": seed, "early_stopping":early_stopping, "no_repeat_ngram_size":no_repeat_ngram_size, "num_beams":num_beams}}
data = query(
payload
)
print(data)
return data[0]["generated_text"]
gr.Interface(
inference,
[
gr.inputs.Textbox(label="Input"),
gr.inputs.Slider(1, 64, default=8, step=1, label="Tokens to generate"),
gr.inputs.Slider(1, 10, default=2, step=1, label="No repeat N gram"),
gr.inputs.Slider(0, 10, default=5, step=1, label="Num beams"),
gr.inputs.Slider(0.0, 1.0, default=0.1, step=0.05, label="Temperature"),
gr.inputs.Slider(0, 64, default=0, step=1, label="Top K"),
gr.inputs.Slider(0.0, 10, default=0.9, step=0.05, label="Top P"),
gr.inputs.Checkbox(False, label="Greedy decoding"),
],
gr.outputs.Textbox(label="Output"),
examples=examples,
# article=article,
title=title,
description=description,
flagging_callback=hf_writer,
allow_flagging=True,
).launch()