import argparse from tools.utils import * import os from tqdm import tqdm from glob import glob import time import numpy as np from net import generator os.environ["CUDA_VISIBLE_DEVICES"] = "-1" def stats_graph(graph): flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation()) # params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()) print('FLOPs: {}'.format(flops.total_float_ops)) g_sess = None test_generated = None test_real = None def test(checkpoint_dir, style_name, test_file, if_adjust_brightness, img_size=[256,256]): global g_sess global test_generated global test_real # tf.reset_default_graph() result_dir = 'results/'+style_name check_folder(result_dir) if g_sess is None: test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=False): test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() gpu_options = tf.GPUOptions(allow_growth=True) g_sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) # load model ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") return # stats_graph(tf.get_default_graph()) begin = time.time() # print('Processing image: ' + sample_file) sample_image = np.asarray(load_test_data(test_file, img_size)) image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(test_file))) fake_img = g_sess.run(test_generated, feed_dict = {test_real : sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, test_file) else: save_images(fake_img, image_path, None) end = time.time() print(f'test-time: {end-begin} s') return image_path