File size: 17,929 Bytes
bbc8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec2c64
bbc8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
9a46bc0
bbc8169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
import random


start_time = time.time()
is_colab = utils.is_google_colab()
state = None
current_steps = 25

class Model:
    def __init__(self, name, path="", prefix=""):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None

models = [
     Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
     Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
     Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
     Model("Anything V4", "andite/anything-v4.0", ""),
     Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
     Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
     Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
     Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
     Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
     Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
     Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
     Model("Waifu", "hakurei/waifu-diffusion"),
     Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
     Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
     Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
     Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
     Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
     Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
     Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
     Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
     Model("Robo Diffusion", "nousr/robo-diffusion"),
     Model("Epic Diffusion", "johnslegers/epic-diffusion")
  ]

custom_model = None
if is_colab:
  models.insert(0, Model("Custom model"))
  custom_model = models[0]

last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path

if is_colab:
  pipe = StableDiffusionPipeline.from_pretrained(
      current_model.path,
      torch_dtype=torch.float32,
      scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
      safety_checker=lambda images, clip_input: (images, False)
      )

else:
  pipe = StableDiffusionPipeline.from_pretrained(
      current_model.path,
      torch_dtype=torch.float32,
      scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
      )
    
if torch.cuda.is_available():
  pipe = pipe.to("cuda")
  pipe.enable_xformers_memory_efficient_attention()

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def update_state(new_state):
  global state
  state = new_state

def update_state_info(old_state):
  if state and state != old_state:
    return gr.update(value=state)

def custom_model_changed(path):
  models[0].path = path
  global current_model
  current_model = models[0]

def on_model_change(model_name):
  
  prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"

  return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)

def on_steps_change(steps):
  global current_steps
  current_steps = steps

def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
    update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")

def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

  update_state(" ")

  print(psutil.virtual_memory()) # print memory usage

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  # generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
  if seed == 0:
    seed = random.randint(0, 2147483647)

  generator = torch.Generator('cpu').manual_seed(seed)

  try:
    if img is not None:
      return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
    else:
      return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
  except Exception as e:
    return None, error_str(e)

def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} text-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float32,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float32,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt  
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator,
      callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):

    print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        update_state(f"Loading {current_model.name} image-to-image model...")

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float32,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torch.float32,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
          pipe.enable_xformers_memory_efficient_attention()
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        num_images_per_prompt=n_images,
        image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        # width = width,
        # height = height,
        generator = generator,
        callback=pipe_callback)

    # update_state(f"Done. Seed: {seed}")
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):

    if is_colab:
      return results.images
      
    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw.png")
    return results.images

# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
# """
with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Finetuned Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
              </p>
              <p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
               Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
              <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
              with gr.Box(visible=False) as custom_model_group:
                custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
                gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
              
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))


              # image_out = gr.Image(height=512)
              gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
          
          state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

              n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    if is_colab:
        model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
        custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
    steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)

    inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
    outputs = [gallery, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    ex = gr.Examples([
        [models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
        [models[4].name, "portrait of dwayne johnson", 7.0, 35],
        [models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
        [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
        [models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
    ], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)

    gr.HTML("""
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
      <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
      <p>Space by:<br>
      <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
      <a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
      <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
      <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
    </div>
    """)

    demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)

print(f"Space built in {time.time() - start_time:.2f} seconds")

# if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)