import os import cv2 import torch import numpy as np from models import ResnetGenerator import argparse from utils import Preprocess class Photo2Cartoon: def __init__(self): self.pre = Preprocess() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.net = ResnetGenerator(ngf=32, img_size=256, light=True).to(self.device) curPath = os.path.abspath(os.path.dirname(__file__)) #assert os.path.exists('./models/photo2cartoon_weights.pt'), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'" params = torch.load(os.path.join(curPath, 'models/photo2cartoon_weights.pt'), map_location=self.device) self.net.load_state_dict(params['genA2B']) print('[Step1: load weights] success!') def inference(self, in_path): img = cv2.cvtColor(cv2.imread(in_path), cv2.COLOR_BGR2RGB) # face alignment and segmentation face_rgba = self.pre.process(img) if face_rgba is None: print('[Step2: face detect] can not detect face!!!') return None print('[Step2: face detect] success!') face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA) face = face_rgba[:, :, :3].copy() mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255. face = (face*mask + (1-mask)*255) / 127.5 - 1 face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32) face = torch.from_numpy(face).to(self.device) # inference with torch.no_grad(): cartoon = self.net(face)[0][0] # post-process cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0)) cartoon = (cartoon + 1) * 127.5 cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8) #cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR) print('[Step3: photo to cartoon] success!') return cartoon