Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import sys | |
sys.path.insert(0, 'U-2-Net') | |
from skimage import io, transform | |
import torch | |
import torchvision | |
from torch.autograd import Variable | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms#, utils | |
# import torch.optim as optim | |
import numpy as np | |
from PIL import Image | |
import glob | |
from data_loader import RescaleT | |
from data_loader import ToTensor | |
from data_loader import ToTensorLab | |
from data_loader import SalObjDataset | |
from model import U2NET # full size version 173.6 MB | |
from model import U2NETP # small version u2net 4.7 MB | |
# normalize the predicted SOD probability map | |
def normPRED(d): | |
ma = torch.max(d) | |
mi = torch.min(d) | |
dn = (d-mi)/(ma-mi) | |
return dn | |
def save_output(image_name,pred,d_dir): | |
predict = pred | |
predict = predict.squeeze() | |
predict_np = predict.cpu().data.numpy() | |
im = Image.fromarray(predict_np*255).convert('RGB') | |
img_name = image_name.split(os.sep)[-1] | |
image = io.imread(image_name) | |
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR) | |
pb_np = np.array(imo) | |
aaa = img_name.split(".") | |
bbb = aaa[0:-1] | |
imidx = bbb[0] | |
for i in range(1,len(bbb)): | |
imidx = imidx + "." + bbb[i] | |
imo.save(d_dir+'/'+imidx+'.png') | |
return d_dir+'/'+imidx+'.png' | |
# --------- 1. get image path and name --------- | |
model_name='u2net_portrait'#u2netp | |
image_dir = 'portrait_im' | |
prediction_dir = 'portrait_results' | |
if(not os.path.exists(prediction_dir)): | |
os.mkdir(prediction_dir) | |
model_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'U-2-Net/saved_models/u2net_portrait/u2net_portrait.pth') | |
# --------- 3. model define --------- | |
print("...load U2NET---173.6 MB") | |
net = U2NET(3,1) | |
net.load_state_dict(torch.load(model_dir, map_location='cpu')) | |
# if torch.cuda.is_available(): | |
# net.cuda() | |
net.eval() | |
def process(im): | |
img_name_list = glob.glob(im.name) | |
print("Number of images: ", len(img_name_list)) | |
# --------- 2. dataloader --------- | |
# 1. dataloader | |
test_salobj_dataset = SalObjDataset(img_name_list=img_name_list, | |
lbl_name_list=[], | |
transform=transforms.Compose([RescaleT(512), | |
ToTensorLab(flag=0)]) | |
) | |
test_salobj_dataloader = DataLoader(test_salobj_dataset, | |
batch_size=1, | |
shuffle=False, | |
num_workers=1) | |
results = [] | |
# --------- 4. inference for each image --------- | |
for i_test, data_test in enumerate(test_salobj_dataloader): | |
print("inferencing:", img_name_list[i_test].split(os.sep)[-1]) | |
inputs_test = data_test['image'] | |
inputs_test = inputs_test.type(torch.FloatTensor) | |
# if torch.cuda.is_available(): | |
# inputs_test = Variable(inputs_test.cuda()) | |
# else: | |
inputs_test = Variable(inputs_test) | |
d1, d2, d3, d4, d5, d6, d7 = net(inputs_test) | |
# normalization | |
pred = 1.0 - d1[:, 0, :, :] | |
pred = normPRED(pred) | |
# save results to test_results folder | |
results.append(save_output(img_name_list[i_test], pred, prediction_dir)) | |
del d1, d2, d3, d4, d5, d6, d7 | |
print(results) | |
return Image.open(results[0]) | |
title = "U-2-Net" | |
description = "Gradio demo for U-2-Net, https://github.com/xuebinqin/U-2-Net" | |
article = "" | |
gr.Interface( | |
process, | |
[gr.inputs.Image(type="pil", label="Input") | |
], | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[], | |
allow_flagging=False, | |
allow_screenshot=False | |
).launch(enable_queue=True,cache_examples=True) | |