Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import spaces
|
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
|
12 |
-
DESCRIPTION = "# Mistral-7B"
|
13 |
|
14 |
if not torch.cuda.is_available():
|
15 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
@@ -19,7 +19,7 @@ DEFAULT_MAX_NEW_TOKENS = 1024
|
|
19 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
20 |
|
21 |
if torch.cuda.is_available():
|
22 |
-
model_id = "mistralai/Mistral-7B-Instruct-v0.
|
23 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
|
@@ -45,7 +45,7 @@ def generate(
|
|
45 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
46 |
input_ids = input_ids.to(model.device)
|
47 |
|
48 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=
|
49 |
generate_kwargs = dict(
|
50 |
{"input_ids": input_ids},
|
51 |
streamer=streamer,
|
|
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
|
12 |
+
DESCRIPTION = "# Mistral-7B v0.2"
|
13 |
|
14 |
if not torch.cuda.is_available():
|
15 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
|
|
19 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
20 |
|
21 |
if torch.cuda.is_available():
|
22 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
23 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
|
|
|
45 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
46 |
input_ids = input_ids.to(model.device)
|
47 |
|
48 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
49 |
generate_kwargs = dict(
|
50 |
{"input_ids": input_ids},
|
51 |
streamer=streamer,
|