Spaces:
Paused
Paused
import traceback | |
from toolbox import update_ui, get_conf | |
def input_clipping(inputs, history, max_token_limit): | |
import tiktoken | |
import numpy as np | |
enc = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) | |
mode = 'input-and-history' | |
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史 | |
input_token_num = get_token_num(inputs) | |
if input_token_num < max_token_limit//2: | |
mode = 'only-history' | |
max_token_limit = max_token_limit - input_token_num | |
everything = [inputs] if mode == 'input-and-history' else [''] | |
everything.extend(history) | |
n_token = get_token_num('\n'.join(everything)) | |
everything_token = [get_token_num(e) for e in everything] | |
delta = max(everything_token) // 16 # 截断时的颗粒度 | |
while n_token > max_token_limit: | |
where = np.argmax(everything_token) | |
encoded = enc.encode(everything[where], disallowed_special=()) | |
clipped_encoded = encoded[:len(encoded)-delta] | |
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char | |
everything_token[where] = get_token_num(everything[where]) | |
n_token = get_token_num('\n'.join(everything)) | |
if mode == 'input-and-history': | |
inputs = everything[0] | |
else: | |
pass | |
history = everything[1:] | |
return inputs, history | |
def request_gpt_model_in_new_thread_with_ui_alive( | |
inputs, inputs_show_user, llm_kwargs, | |
chatbot, history, sys_prompt, refresh_interval=0.2, | |
handle_token_exceed=True, | |
retry_times_at_unknown_error=2, | |
): | |
""" | |
Request GPT model,请求GPT模型同时维持用户界面活跃。 | |
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): | |
inputs (string): List of inputs (输入) | |
inputs_show_user (string): List of inputs to show user(展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) | |
top_p (float): Top p value for sampling from model distribution (GPT参数,浮点数) | |
temperature (float): Temperature value for sampling from model distribution(GPT参数,浮点数) | |
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化) | |
history (list): List of chat history (历史,对话历史列表) | |
sys_prompt (string): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) | |
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) | |
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 | |
retry_times_at_unknown_error:失败时的重试次数 | |
输出 Returns: | |
future: 输出,GPT返回的结果 | |
""" | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from request_llm.bridge_all import predict_no_ui_long_connection | |
# 用户反馈 | |
chatbot.append([inputs_show_user, ""]) | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
executor = ThreadPoolExecutor(max_workers=16) | |
mutable = ["", time.time(), ""] | |
def _req_gpt(inputs, history, sys_prompt): | |
retry_op = retry_times_at_unknown_error | |
exceeded_cnt = 0 | |
while True: | |
# watchdog error | |
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5: | |
raise RuntimeError("检测到程序终止。") | |
try: | |
# 【第一种情况】:顺利完成 | |
result = predict_no_ui_long_connection( | |
inputs=inputs, llm_kwargs=llm_kwargs, | |
history=history, sys_prompt=sys_prompt, observe_window=mutable) | |
return result | |
except ConnectionAbortedError as token_exceeded_error: | |
# 【第二种情况】:Token溢出 | |
if handle_token_exceed: | |
exceeded_cnt += 1 | |
# 【选择处理】 尝试计算比例,尽可能多地保留文本 | |
from toolbox import get_reduce_token_percent | |
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) | |
MAX_TOKEN = 4096 | |
EXCEED_ALLO = 512 + 512 * exceeded_cnt | |
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) | |
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' | |
continue # 返回重试 | |
else: | |
# 【选择放弃】 | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" | |
return mutable[0] # 放弃 | |
except: | |
# 【第三种情况】:其他错误:重试几次 | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
print(tb_str) | |
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" | |
if retry_op > 0: | |
retry_op -= 1 | |
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}:\n\n" | |
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): | |
time.sleep(30) | |
time.sleep(5) | |
continue # 返回重试 | |
else: | |
time.sleep(5) | |
return mutable[0] # 放弃 | |
# 提交任务 | |
future = executor.submit(_req_gpt, inputs, history, sys_prompt) | |
while True: | |
# yield一次以刷新前端页面 | |
time.sleep(refresh_interval) | |
# “喂狗”(看门狗) | |
mutable[1] = time.time() | |
if future.done(): | |
break | |
chatbot[-1] = [chatbot[-1][0], mutable[0]] | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
final_result = future.result() | |
chatbot[-1] = [chatbot[-1][0], final_result] | |
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息 | |
return final_result | |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
inputs_array, inputs_show_user_array, llm_kwargs, | |
chatbot, history_array, sys_prompt_array, | |
refresh_interval=0.2, max_workers=-1, scroller_max_len=30, | |
handle_token_exceed=True, show_user_at_complete=False, | |
retry_times_at_unknown_error=2, | |
): | |
""" | |
Request GPT model using multiple threads with UI and high efficiency | |
请求GPT模型的[多线程]版。 | |
具备以下功能: | |
实时在UI上反馈远程数据流 | |
使用线程池,可调节线程池的大小避免openai的流量限制错误 | |
处理中途中止的情况 | |
网络等出问题时,会把traceback和已经接收的数据转入输出 | |
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): | |
inputs_array (list): List of inputs (每个子任务的输入) | |
inputs_show_user_array (list): List of inputs to show user(每个子任务展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) | |
llm_kwargs: llm_kwargs参数 | |
chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化) | |
history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史) | |
sys_prompt_array (list): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) | |
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) | |
max_workers (int, optional): Maximum number of threads (default: see config.py) (最大线程数,如果子任务非常多,需要用此选项防止高频地请求openai导致错误) | |
scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果) | |
handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本) | |
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 | |
show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框) | |
retry_times_at_unknown_error:子任务失败时的重试次数 | |
输出 Returns: | |
list: List of GPT model responses (每个子任务的输出汇总,如果某个子任务出错,response中会携带traceback报错信息,方便调试和定位问题。) | |
""" | |
import time, random | |
from concurrent.futures import ThreadPoolExecutor | |
from request_llm.bridge_all import predict_no_ui_long_connection | |
assert len(inputs_array) == len(history_array) | |
assert len(inputs_array) == len(sys_prompt_array) | |
if max_workers == -1: # 读取配置文件 | |
try: max_workers, = get_conf('DEFAULT_WORKER_NUM') | |
except: max_workers = 8 | |
if max_workers <= 0 or max_workers >= 20: max_workers = 8 | |
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿 | |
if not llm_kwargs['llm_model'].startswith('gpt-'): | |
max_workers = 1 | |
executor = ThreadPoolExecutor(max_workers=max_workers) | |
n_frag = len(inputs_array) | |
# 用户反馈 | |
chatbot.append(["请开始多线程操作。", ""]) | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
# 跨线程传递 | |
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)] | |
# 子线程任务 | |
def _req_gpt(index, inputs, history, sys_prompt): | |
gpt_say = "" | |
retry_op = retry_times_at_unknown_error | |
exceeded_cnt = 0 | |
mutable[index][2] = "执行中" | |
while True: | |
# watchdog error | |
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5: | |
raise RuntimeError("检测到程序终止。") | |
try: | |
# 【第一种情况】:顺利完成 | |
# time.sleep(10); raise RuntimeError("测试") | |
gpt_say = predict_no_ui_long_connection( | |
inputs=inputs, llm_kwargs=llm_kwargs, history=history, | |
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True | |
) | |
mutable[index][2] = "已成功" | |
return gpt_say | |
except ConnectionAbortedError as token_exceeded_error: | |
# 【第二种情况】:Token溢出, | |
if handle_token_exceed: | |
exceeded_cnt += 1 | |
# 【选择处理】 尝试计算比例,尽可能多地保留文本 | |
from toolbox import get_reduce_token_percent | |
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) | |
MAX_TOKEN = 4096 | |
EXCEED_ALLO = 512 + 512 * exceeded_cnt | |
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) | |
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' | |
mutable[index][2] = f"截断重试" | |
continue # 返回重试 | |
else: | |
# 【选择放弃】 | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" | |
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] | |
mutable[index][2] = "输入过长已放弃" | |
return gpt_say # 放弃 | |
except: | |
# 【第三种情况】:其他错误 | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
print(tb_str) | |
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" | |
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] | |
if retry_op > 0: | |
retry_op -= 1 | |
wait = random.randint(5, 20) | |
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): | |
wait = wait * 3 | |
fail_info = "OpenAI绑定信用卡可解除频率限制 " | |
else: | |
fail_info = "" | |
# 也许等待十几秒后,情况会好转 | |
for i in range(wait): | |
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1) | |
# 开始重试 | |
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}" | |
continue # 返回重试 | |
else: | |
mutable[index][2] = "已失败" | |
wait = 5 | |
time.sleep(5) | |
return gpt_say # 放弃 | |
# 异步任务开始 | |
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip( | |
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] | |
cnt = 0 | |
while True: | |
# yield一次以刷新前端页面 | |
time.sleep(refresh_interval) | |
cnt += 1 | |
worker_done = [h.done() for h in futures] | |
if all(worker_done): | |
executor.shutdown() | |
break | |
# 更好的UI视觉效果 | |
observe_win = [] | |
# 每个线程都要“喂狗”(看门狗) | |
for thread_index, _ in enumerate(worker_done): | |
mutable[thread_index][1] = time.time() | |
# 在前端打印些好玩的东西 | |
for thread_index, _ in enumerate(worker_done): | |
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ | |
replace('\n', '').replace('```', '...').replace( | |
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]" | |
observe_win.append(print_something_really_funny) | |
# 在前端打印些好玩的东西 | |
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n' | |
if not done else f'`{mutable[thread_index][2]}`\n\n' | |
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)]) | |
# 在前端打印些好玩的东西 | |
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))] | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
# 异步任务结束 | |
gpt_response_collection = [] | |
for inputs_show_user, f in zip(inputs_show_user_array, futures): | |
gpt_res = f.result() | |
gpt_response_collection.extend([inputs_show_user, gpt_res]) | |
# 是否在结束时,在界面上显示结果 | |
if show_user_at_complete: | |
for inputs_show_user, f in zip(inputs_show_user_array, futures): | |
gpt_res = f.result() | |
chatbot.append([inputs_show_user, gpt_res]) | |
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 | |
time.sleep(0.3) | |
return gpt_response_collection | |
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit): | |
def cut(txt_tocut, must_break_at_empty_line): # 递归 | |
if get_token_fn(txt_tocut) <= limit: | |
return [txt_tocut] | |
else: | |
lines = txt_tocut.split('\n') | |
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) | |
estimated_line_cut = int(estimated_line_cut) | |
for cnt in reversed(range(estimated_line_cut)): | |
if must_break_at_empty_line: | |
if lines[cnt] != "": | |
continue | |
print(cnt) | |
prev = "\n".join(lines[:cnt]) | |
post = "\n".join(lines[cnt:]) | |
if get_token_fn(prev) < limit: | |
break | |
if cnt == 0: | |
raise RuntimeError("存在一行极长的文本!") | |
# print(len(post)) | |
# 列表递归接龙 | |
result = [prev] | |
result.extend(cut(post, must_break_at_empty_line)) | |
return result | |
try: | |
return cut(txt, must_break_at_empty_line=True) | |
except RuntimeError: | |
return cut(txt, must_break_at_empty_line=False) | |
def force_breakdown(txt, limit, get_token_fn): | |
""" | |
当无法用标点、空行分割时,我们用最暴力的方法切割 | |
""" | |
for i in reversed(range(len(txt))): | |
if get_token_fn(txt[:i]) < limit: | |
return txt[:i], txt[i:] | |
return "Tiktoken未知错误", "Tiktoken未知错误" | |
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): | |
# 递归 | |
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False): | |
if get_token_fn(txt_tocut) <= limit: | |
return [txt_tocut] | |
else: | |
lines = txt_tocut.split('\n') | |
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) | |
estimated_line_cut = int(estimated_line_cut) | |
cnt = 0 | |
for cnt in reversed(range(estimated_line_cut)): | |
if must_break_at_empty_line: | |
if lines[cnt] != "": | |
continue | |
prev = "\n".join(lines[:cnt]) | |
post = "\n".join(lines[cnt:]) | |
if get_token_fn(prev) < limit: | |
break | |
if cnt == 0: | |
if break_anyway: | |
prev, post = force_breakdown(txt_tocut, limit, get_token_fn) | |
else: | |
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}") | |
# print(len(post)) | |
# 列表递归接龙 | |
result = [prev] | |
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway)) | |
return result | |
try: | |
# 第1次尝试,将双空行(\n\n)作为切分点 | |
return cut(txt, must_break_at_empty_line=True) | |
except RuntimeError: | |
try: | |
# 第2次尝试,将单空行(\n)作为切分点 | |
return cut(txt, must_break_at_empty_line=False) | |
except RuntimeError: | |
try: | |
# 第3次尝试,将英文句号(.)作为切分点 | |
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在 | |
return [r.replace('。\n', '.') for r in res] | |
except RuntimeError as e: | |
try: | |
# 第4次尝试,将中文句号(。)作为切分点 | |
res = cut(txt.replace('。', '。。\n'), must_break_at_empty_line=False) | |
return [r.replace('。。\n', '。') for r in res] | |
except RuntimeError as e: | |
# 第5次尝试,没办法了,随便切一下敷衍吧 | |
return cut(txt, must_break_at_empty_line=False, break_anyway=True) | |
def read_and_clean_pdf_text(fp): | |
""" | |
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好 | |
**输入参数说明** | |
- `fp`:需要读取和清理文本的pdf文件路径 | |
**输出参数说明** | |
- `meta_txt`:清理后的文本内容字符串 | |
- `page_one_meta`:第一页清理后的文本内容列表 | |
**函数功能** | |
读取pdf文件并清理其中的文本内容,清理规则包括: | |
- 提取所有块元的文本信息,并合并为一个字符串 | |
- 去除短块(字符数小于100)并替换为回车符 | |
- 清理多余的空行 | |
- 合并小写字母开头的段落块并替换为空格 | |
- 清除重复的换行 | |
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 | |
""" | |
import fitz, copy | |
import re | |
import numpy as np | |
from colorful import print亮黄, print亮绿 | |
fc = 0 # Index 0 文本 | |
fs = 1 # Index 1 字体 | |
fb = 2 # Index 2 框框 | |
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等) | |
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文(有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化) | |
def primary_ffsize(l): | |
""" | |
提取文本块主字体 | |
""" | |
fsize_statiscs = {} | |
for wtf in l['spans']: | |
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0 | |
fsize_statiscs[wtf['size']] += len(wtf['text']) | |
return max(fsize_statiscs, key=fsize_statiscs.get) | |
def ffsize_same(a,b): | |
""" | |
提取字体大小是否近似相等 | |
""" | |
return abs((a-b)/max(a,b)) < 0.02 | |
with fitz.open(fp) as doc: | |
meta_txt = [] | |
meta_font = [] | |
meta_line = [] | |
meta_span = [] | |
############################## <第 1 步,搜集初始信息> ################################## | |
for index, page in enumerate(doc): | |
# file_content += page.get_text() | |
text_areas = page.get_text("dict") # 获取页面上的文本信息 | |
for t in text_areas['blocks']: | |
if 'lines' in t: | |
pf = 998 | |
for l in t['lines']: | |
txt_line = "".join([wtf['text'] for wtf in l['spans']]) | |
pf = primary_ffsize(l) | |
meta_line.append([txt_line, pf, l['bbox'], l]) | |
for wtf in l['spans']: # for l in t['lines']: | |
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])]) | |
# meta_line.append(["NEW_BLOCK", pf]) | |
# 块元提取 for each word segment with in line for each line cross-line words for each block | |
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( | |
'- ', '') for t in text_areas['blocks'] if 'lines' in t]) | |
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) | |
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) | |
if index == 0: | |
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( | |
'- ', '') for t in text_areas['blocks'] if 'lines' in t] | |
############################## <第 2 步,获取正文主字体> ################################## | |
fsize_statiscs = {} | |
for span in meta_span: | |
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0 | |
fsize_statiscs[span[1]] += span[2] | |
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get) | |
if REMOVE_FOOT_NOTE: | |
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT | |
############################## <第 3 步,切分和重新整合> ################################## | |
mega_sec = [] | |
sec = [] | |
for index, line in enumerate(meta_line): | |
if index == 0: | |
sec.append(line[fc]) | |
continue | |
if REMOVE_FOOT_NOTE: | |
if meta_line[index][fs] <= give_up_fize_threshold: | |
continue | |
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]): | |
# 尝试识别段落 | |
if meta_line[index][fc].endswith('.') and\ | |
(meta_line[index-1][fc] != 'NEW_BLOCK') and \ | |
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7: | |
sec[-1] += line[fc] | |
sec[-1] += "\n\n" | |
else: | |
sec[-1] += " " | |
sec[-1] += line[fc] | |
else: | |
if (index+1 < len(meta_line)) and \ | |
meta_line[index][fs] > main_fsize: | |
# 单行 + 字体大 | |
mega_sec.append(copy.deepcopy(sec)) | |
sec = [] | |
sec.append("# " + line[fc]) | |
else: | |
# 尝试识别section | |
if meta_line[index-1][fs] > meta_line[index][fs]: | |
sec.append("\n" + line[fc]) | |
else: | |
sec.append(line[fc]) | |
mega_sec.append(copy.deepcopy(sec)) | |
finals = [] | |
for ms in mega_sec: | |
final = " ".join(ms) | |
final = final.replace('- ', ' ') | |
finals.append(final) | |
meta_txt = finals | |
############################## <第 4 步,乱七八糟的后处理> ################################## | |
def 把字符太少的块清除为回车(meta_txt): | |
for index, block_txt in enumerate(meta_txt): | |
if len(block_txt) < 100: | |
meta_txt[index] = '\n' | |
return meta_txt | |
meta_txt = 把字符太少的块清除为回车(meta_txt) | |
def 清理多余的空行(meta_txt): | |
for index in reversed(range(1, len(meta_txt))): | |
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': | |
meta_txt.pop(index) | |
return meta_txt | |
meta_txt = 清理多余的空行(meta_txt) | |
def 合并小写开头的段落块(meta_txt): | |
def starts_with_lowercase_word(s): | |
pattern = r"^[a-z]+" | |
match = re.match(pattern, s) | |
if match: | |
return True | |
else: | |
return False | |
for _ in range(100): | |
for index, block_txt in enumerate(meta_txt): | |
if starts_with_lowercase_word(block_txt): | |
if meta_txt[index-1] != '\n': | |
meta_txt[index-1] += ' ' | |
else: | |
meta_txt[index-1] = '' | |
meta_txt[index-1] += meta_txt[index] | |
meta_txt[index] = '\n' | |
return meta_txt | |
meta_txt = 合并小写开头的段落块(meta_txt) | |
meta_txt = 清理多余的空行(meta_txt) | |
meta_txt = '\n'.join(meta_txt) | |
# 清除重复的换行 | |
for _ in range(5): | |
meta_txt = meta_txt.replace('\n\n', '\n') | |
# 换行 -> 双换行 | |
meta_txt = meta_txt.replace('\n', '\n\n') | |
############################## <第 5 步,展示分割效果> ################################## | |
for f in finals: | |
print亮黄(f) | |
print亮绿('***************************') | |
return meta_txt, page_one_meta | |