Spaces:
Running
Running
Gradio
Browse files- app.py +232 -4
- key_info.py +27 -0
- llama2_response_mail_generator.py +58 -0
- requirements.txt +9 -0
- summarization_with_bart.py +24 -0
app.py
CHANGED
@@ -1,7 +1,235 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from key_info import extract_entities
|
4 |
+
from summarization_with_bart import summarize_email_conditional
|
5 |
+
from llama2_response_mail_generator import generate_email_response
|
6 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
import torch
|
8 |
+
import spacy
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from llama_cpp import Llama
|
11 |
+
import subprocess
|
12 |
|
13 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
14 |
+
|
15 |
+
|
16 |
+
"""**Original code**
|
17 |
+
|
18 |
+
**CSS for Interface**
|
19 |
+
"""
|
20 |
+
|
21 |
+
custom_css = ''' @import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css');
|
22 |
+
|
23 |
+
body {
|
24 |
+
background-color: #eef1f5; /* Light grey-blue background for a neutral, clean look */
|
25 |
+
}
|
26 |
+
label {
|
27 |
+
color: #34495e; /* Dark blue-grey for a professional appearance */
|
28 |
+
font-weight: bold;
|
29 |
+
}
|
30 |
+
textarea, input, select, button {
|
31 |
+
background-color: #ffffff; /* Crisp white background for input fields and buttons */
|
32 |
+
border: 1px solid #bdc3c7; /* Soft grey border for a subtle, refined look */
|
33 |
+
color: #2c3e50; /* Darker shade of blue-grey for text, enhancing readability */
|
34 |
+
}
|
35 |
+
button {
|
36 |
+
background-color: #3498db; /* Bright blue for buttons to stand out */
|
37 |
+
color: black ; /* White text on buttons for clarity */
|
38 |
+
border-radius: 4px; /* Slightly rounded corners for a modern touch */
|
39 |
+
font-weight: bold; /* Bold text for emphasis */
|
40 |
+
font-size: 16px; /* Sizable text for easy interaction */
|
41 |
+
}
|
42 |
+
button[type="submit"], button[type="reset"], button[type="button"] {
|
43 |
+
font-weight: bold; /* Ensures all actionable buttons are prominent */
|
44 |
+
font-size: 18px; /* Larger text size for better visibility and impact */
|
45 |
+
}
|
46 |
+
.result-box {
|
47 |
+
background-color: #ecf0f1; /* Very light grey for result boxes, ensuring focus */
|
48 |
+
color: #2c3e50; /* Consistent dark blue-grey text for uniformity */
|
49 |
+
border: 1px solid #bdc3c7; /* Matching the input field borders for design coherence */
|
50 |
+
}
|
51 |
+
.gradio-toolbar {
|
52 |
+
background-color: #ffffff; /* Maintains a clean, unobtrusive toolbar appearance */
|
53 |
+
border-top: 2px solid #3498db; /* A pop of bright blue to delineate the toolbar */
|
54 |
+
}
|
55 |
+
|
56 |
+
'''
|
57 |
+
|
58 |
+
"""**Seperate** **Interface**"""
|
59 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
60 |
+
nlp = spacy.load("en_core_web_sm")
|
61 |
+
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", tokenizer="dbmdz/bert-large-cased-finetuned-conll03-english")
|
62 |
+
model_path = './fine_tuned_roberta_for_category_model_'
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
64 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
65 |
+
model.eval()
|
66 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
67 |
+
model.to(device)
|
68 |
+
# Load model and tokenizer from the drive
|
69 |
+
model_sentiment_path = './fine_tuned_roberta_for_sentiment_analysis_2000_'
|
70 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained(model_sentiment_path)
|
71 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained(model_sentiment_path)
|
72 |
+
model_sentiment.eval()
|
73 |
+
model_sentiment.to(device)
|
74 |
+
|
75 |
+
|
76 |
+
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGML"
|
77 |
+
model_basename = "llama-2-13b-chat.ggmlv3.q5_1.bin" # The model is in bin format
|
78 |
+
|
79 |
+
# Download the model file
|
80 |
+
model_path_llama = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
81 |
+
|
82 |
+
# Initialize the Llama model with appropriate settings for GPU
|
83 |
+
lcpp_llm = Llama(
|
84 |
+
model_path=model_path_llama,
|
85 |
+
n_threads=2, # CPU cores to use
|
86 |
+
n_batch=512, # Batch size for processing; adjust as per your VRAM capacity
|
87 |
+
n_gpu_layers=32 # Number of layers to run on GPU, dependent on your GPU's VRAM
|
88 |
+
)
|
89 |
+
|
90 |
+
def generate_email_response(email_prompt):
|
91 |
+
# Check input received by the function
|
92 |
+
print("Received prompt:", email_prompt)
|
93 |
+
|
94 |
+
# Determine if the input is a shorthand command or an actual email
|
95 |
+
if 'email to' in email_prompt.lower():
|
96 |
+
# Assume it's a shorthand command, format appropriately
|
97 |
+
formatted_prompt = f'''
|
98 |
+
Email received: "{email_prompt}"
|
99 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
100 |
+
Response:
|
101 |
+
'''
|
102 |
+
else:
|
103 |
+
# Assume it's direct email content
|
104 |
+
formatted_prompt = f'''
|
105 |
+
Email received: "{email_prompt}"
|
106 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
107 |
+
Response:
|
108 |
+
'''
|
109 |
+
|
110 |
+
# Generate response using Llama-2 model
|
111 |
+
try:
|
112 |
+
response = lcpp_llm(
|
113 |
+
prompt=formatted_prompt,
|
114 |
+
max_tokens=256,
|
115 |
+
temperature=0.5,
|
116 |
+
top_p=0.95,
|
117 |
+
repeat_penalty=1.2,
|
118 |
+
top_k=150,
|
119 |
+
echo=True
|
120 |
+
)
|
121 |
+
generated_response = response["choices"][0]["text"]
|
122 |
+
# Remove the input part from the output if it is included
|
123 |
+
if formatted_prompt in generated_response:
|
124 |
+
generated_response = generated_response.replace(formatted_prompt, '').strip()
|
125 |
+
print("Generated response:", generated_response)
|
126 |
+
return generated_response
|
127 |
+
except Exception as e:
|
128 |
+
print("Error in response generation:", str(e))
|
129 |
+
return "Failed to generate response, please check the console for errors."
|
130 |
+
|
131 |
+
def classify_sentiment(text):
|
132 |
+
# Encode the text using the tokenizer
|
133 |
+
inputs = tokenizer_sentiment(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
134 |
+
input_ids = inputs['input_ids'].to(device)
|
135 |
+
attention_mask = inputs['attention_mask'].to(device)
|
136 |
+
|
137 |
+
# Get model predictions
|
138 |
+
with torch.no_grad():
|
139 |
+
outputs = model_sentiment(input_ids=input_ids, attention_mask=attention_mask)
|
140 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
|
141 |
+
|
142 |
+
# Convert predictions to probabilities and sentiment category
|
143 |
+
probabilities = predictions.cpu().numpy()[0]
|
144 |
+
categories = ["Positive", "Neutral", "Negative"]
|
145 |
+
predicted_sentiment = categories[probabilities.argmax()]
|
146 |
+
|
147 |
+
# Return the predicted sentiment and the confidence
|
148 |
+
confidence = max(probabilities)
|
149 |
+
return f"Sentiment: {predicted_sentiment}, Confidence: {confidence:.2f}"
|
150 |
+
|
151 |
+
def generate_summary(email_text):
|
152 |
+
return summarize_email_conditional(email_text, summarizer)
|
153 |
+
|
154 |
+
def display_entities(email_text):
|
155 |
+
try:
|
156 |
+
results = extract_entities(email_text, nlp, ner_pipeline)
|
157 |
+
|
158 |
+
# Convert to DataFrames
|
159 |
+
data_spacy = pd.DataFrame(results['spaCy Entities'])
|
160 |
+
data_transformer = pd.DataFrame(results['Transformer Entities'])
|
161 |
+
|
162 |
+
return data_spacy, data_transformer, ", ".join(results['Dates'])
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error: {e}")
|
165 |
+
# Return empty outputs in case of error
|
166 |
+
return pd.DataFrame(), pd.DataFrame(), ""
|
167 |
+
|
168 |
+
def classify_email(email):
|
169 |
+
# Encode the email text using the tokenizer
|
170 |
+
inputs = tokenizer(email, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
171 |
+
input_ids = inputs['input_ids'].to(device)
|
172 |
+
attention_mask = inputs['attention_mask'].to(device)
|
173 |
+
|
174 |
+
# Get model predictions
|
175 |
+
with torch.no_grad():
|
176 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
177 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
|
178 |
+
|
179 |
+
# Convert predictions to probabilities and category
|
180 |
+
probabilities = predictions.cpu().numpy()[0]
|
181 |
+
categories = ["Urgent Requests", "Project Updates", "Client Communications", "Meeting Coordination", "Internal Announcements"]
|
182 |
+
predicted_category = categories[probabilities.argmax()]
|
183 |
+
|
184 |
+
# Return the predicted category and the confidence
|
185 |
+
confidence = max(probabilities)
|
186 |
+
return f"Category: {predicted_category}, Confidence: {confidence:.2f}"
|
187 |
+
|
188 |
+
|
189 |
+
iface_category = gr.Interface(
|
190 |
+
fn=classify_email,
|
191 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter Email Content Here..."),
|
192 |
+
outputs="text",
|
193 |
+
title="Email Category Classifier",
|
194 |
+
description="This model classifies email text into one of five categories: Urgent Requests, Project Updates, Client Communications, Meeting Coordination, Internal Announcements."
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
iface_sentiment = gr.Interface(
|
199 |
+
fn=classify_sentiment,
|
200 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Email Text Here..."),
|
201 |
+
outputs=gr.Textbox(label="Sentiment Analysis"),
|
202 |
+
title="Sentiment Analysis"
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
iface_summary = gr.Interface(
|
207 |
+
fn=generate_summary,
|
208 |
+
inputs=[gr.Textbox(lines=5, placeholder="Enter Email Text Here...")],
|
209 |
+
outputs=gr.Textbox(label="Generated Summary"),
|
210 |
+
title="Summary Generation"
|
211 |
+
)
|
212 |
+
|
213 |
+
iface_ner = gr.Interface(
|
214 |
+
fn=display_entities,
|
215 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Email Text Here..."),
|
216 |
+
outputs=[
|
217 |
+
gr.Dataframe(label="spaCy Entity Recognition"),
|
218 |
+
gr.Dataframe(label="Transformer Entity Recognition"),
|
219 |
+
gr.Textbox(label="Extracted Dates")
|
220 |
+
],
|
221 |
+
title="NER Analysis",
|
222 |
+
description="Performs Named Entity Recognition using spaCy and Transformer models."
|
223 |
+
)
|
224 |
+
iface_response = gr.Interface(
|
225 |
+
fn=generate_email_response,
|
226 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter the email prompt..."),
|
227 |
+
outputs=gr.Textbox(label="Generated Email Response"),
|
228 |
+
title="Email Response Generator",
|
229 |
+
description="Generate email responses using Llama-2 model."
|
230 |
+
)
|
231 |
+
|
232 |
+
# Using tabs to organize the interfaces
|
233 |
+
tabs = gr.TabbedInterface([iface_category, iface_sentiment,iface_summary,iface_ner,iface_response], ["Category", "Sentiment"," Summary","NER","Response Generator"], css=custom_css)
|
234 |
+
tabs.launch(share=True)
|
235 |
|
|
|
|
key_info.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
from transformers import pipeline
|
3 |
+
import re
|
4 |
+
from dateutil.parser import parse
|
5 |
+
|
6 |
+
# Regex pattern for dates
|
7 |
+
def extract_entities(email_text, nlp, ner_pipeline):
|
8 |
+
date_pattern = r'\b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)\s+\d{1,2}(?:th|st|nd|rd)?,\s+\d{4}\b'
|
9 |
+
# Use spaCy for initial extraction
|
10 |
+
doc = nlp(email_text)
|
11 |
+
spacy_entities = [{"Text": ent.text, "Type": ent.label_} for ent in doc.ents]
|
12 |
+
|
13 |
+
# Use transformer model for refined extraction
|
14 |
+
transformer_entities = ner_pipeline(email_text)
|
15 |
+
transformer_entities = [{"Text": ent['word'], "Type": ent['entity'], "Score": ent['score']} for ent in transformer_entities if ent['score'] > 0.75]
|
16 |
+
|
17 |
+
# Extract dates using regex
|
18 |
+
potential_dates = re.findall(date_pattern, email_text)
|
19 |
+
dates = [parse(date).strftime('%Y-%m-%d') for date in potential_dates]
|
20 |
+
|
21 |
+
return {
|
22 |
+
"spaCy Entities": spacy_entities,
|
23 |
+
"Transformer Entities": transformer_entities,
|
24 |
+
"Dates": dates
|
25 |
+
}
|
26 |
+
|
27 |
+
|
llama2_response_mail_generator.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
|
3 |
+
from llama_cpp import Llama
|
4 |
+
|
5 |
+
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGML"
|
6 |
+
model_basename = "llama-2-13b-chat.ggmlv3.q5_1.bin" # The model is in bin format
|
7 |
+
|
8 |
+
# Download the model file
|
9 |
+
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
10 |
+
|
11 |
+
# Initialize the Llama model with appropriate settings for GPU
|
12 |
+
lcpp_llm = Llama(
|
13 |
+
model_path=model_path,
|
14 |
+
n_threads=2, # CPU cores to use
|
15 |
+
n_batch=512, # Batch size for processing; adjust as per your VRAM capacity
|
16 |
+
n_gpu_layers=32 # Number of layers to run on GPU, dependent on your GPU's VRAM
|
17 |
+
)
|
18 |
+
|
19 |
+
def generate_email_response(email_prompt):
|
20 |
+
# Check input received by the function
|
21 |
+
print("Received prompt:", email_prompt)
|
22 |
+
|
23 |
+
# Determine if the input is a shorthand command or an actual email
|
24 |
+
if 'email to' in email_prompt.lower():
|
25 |
+
# Assume it's a shorthand command, format appropriately
|
26 |
+
formatted_prompt = f'''
|
27 |
+
Email received: "{email_prompt}"
|
28 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
29 |
+
Response:
|
30 |
+
'''
|
31 |
+
else:
|
32 |
+
# Assume it's direct email content
|
33 |
+
formatted_prompt = f'''
|
34 |
+
Email received: "{email_prompt}"
|
35 |
+
Respond to this email, ensuring a professional tone, providing a concise update, and addressing any potential concerns the sender might have.
|
36 |
+
Response:
|
37 |
+
'''
|
38 |
+
|
39 |
+
# Generate response using Llama-2 model
|
40 |
+
try:
|
41 |
+
response = lcpp_llm(
|
42 |
+
prompt=formatted_prompt,
|
43 |
+
max_tokens=256,
|
44 |
+
temperature=0.5,
|
45 |
+
top_p=0.95,
|
46 |
+
repeat_penalty=1.2,
|
47 |
+
top_k=150,
|
48 |
+
echo=True
|
49 |
+
)
|
50 |
+
generated_response = response["choices"][0]["text"]
|
51 |
+
# Remove the input part from the output if it is included
|
52 |
+
if formatted_prompt in generated_response:
|
53 |
+
generated_response = generated_response.replace(formatted_prompt, '').strip()
|
54 |
+
print("Generated response:", generated_response)
|
55 |
+
return generated_response
|
56 |
+
except Exception as e:
|
57 |
+
print("Error in response generation:", str(e))
|
58 |
+
return "Failed to generate response, please check the console for errors."
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
spacy
|
6 |
+
llama-cpp-python
|
7 |
+
numpy
|
8 |
+
huggingface_hub
|
9 |
+
##TODO python -m spacy download en_core_web_sm
|
summarization_with_bart.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
def summarize_email_conditional(email_text, summarizer, min_input_length=50):
|
4 |
+
"""
|
5 |
+
Summarizes the email if it's longer than min_input_length.
|
6 |
+
Adjusts max_length parameter based on the length of the email.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
- email_text (str): The text of the email to summarize.
|
10 |
+
- min_input_length (int): Minimum length of email to apply summarization.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
- str: The summary of the email or the original email if below the min_input_length.
|
14 |
+
"""
|
15 |
+
# Only summarize if the email is longer than min_input_length
|
16 |
+
if len(email_text.split()) > min_input_length:
|
17 |
+
# Dynamically set max_length to be about 75% of the email length, or any ratio that suits your need
|
18 |
+
max_length = max(12, int(len(email_text.split()) * 0.75))
|
19 |
+
summary = summarizer(email_text, max_length=max_length, min_length=5, do_sample=False)
|
20 |
+
return summary[0]['summary_text']
|
21 |
+
else:
|
22 |
+
# Return the original email text if it's not long enough to require summarization
|
23 |
+
return email_text
|
24 |
+
|