Spaces:
Runtime error
Runtime error
seikin_alexey
commited on
Commit
•
afc83c1
1
Parent(s):
5cbf6e6
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: green
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.19
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
duplicated_from: harish3110/emotion_detection
|
11 |
---
|
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.19
|
8 |
+
app_file: app3.py
|
9 |
pinned: false
|
10 |
duplicated_from: harish3110/emotion_detection
|
11 |
---
|
app4.py
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
from speechbrain.pretrained.interfaces import foreign_class
|
2 |
-
import gradio as gr
|
3 |
-
import os
|
4 |
-
import warnings
|
5 |
-
warnings.filterwarnings("ignore")
|
6 |
-
|
7 |
-
# Function to get the list of audio files in the 'rec/' directory
|
8 |
-
def get_audio_files_list(directory="rec"):
|
9 |
-
try:
|
10 |
-
return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
|
11 |
-
except FileNotFoundError:
|
12 |
-
print("The 'rec' directory does not exist. Please make sure it is the correct path.")
|
13 |
-
return []
|
14 |
-
|
15 |
-
# Loading the speechbrain emotion detection model
|
16 |
-
learner = foreign_class(
|
17 |
-
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
18 |
-
pymodule_file="custom_interface.py",
|
19 |
-
classname="CustomEncoderWav2vec2Classifier"
|
20 |
-
)
|
21 |
-
|
22 |
-
# Building prediction function for Gradio
|
23 |
-
emotion_dict = {
|
24 |
-
'sad': 'Sad',
|
25 |
-
'hap': 'Happy',
|
26 |
-
'ang': 'Anger',
|
27 |
-
'fea': 'Fear',
|
28 |
-
'sur': 'Surprised',
|
29 |
-
'neu': 'Neutral'
|
30 |
-
}
|
31 |
-
|
32 |
-
def predict_emotion(selected_audio):
|
33 |
-
file_path = os.path.join("rec", selected_audio)
|
34 |
-
out_prob, score, index, text_lab = learner.classify_file(file_path)
|
35 |
-
emotion = emotion_dict[text_lab[0]]
|
36 |
-
return emotion, file_path # Return both emotion and file path
|
37 |
-
|
38 |
-
def button_click(selected_audio):
|
39 |
-
emotion, file_path = predict_emotion(selected_audio)
|
40 |
-
return emotion, gr.Interface.Play("rec/" + selected_audio)
|
41 |
-
|
42 |
-
# Get the list of audio files for the dropdown
|
43 |
-
audio_files_list = get_audio_files_list()
|
44 |
-
|
45 |
-
# Loading Gradio interface
|
46 |
-
inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list)
|
47 |
-
outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")]
|
48 |
-
|
49 |
-
# Create the button
|
50 |
-
sub_btn = gr.Interface.Button(label="Detect Emotion", elem_id="btn", onclick=button_click)
|
51 |
-
|
52 |
-
title = "ML Speech Emotion Detection3"
|
53 |
-
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
|
54 |
-
|
55 |
-
interface = gr.Interface(fn=predict_emotion, inputs=[inputs, sub_btn], outputs=outputs, title=title, description=description)
|
56 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|