from speechbrain.pretrained.interfaces import foreign_class import gradio as gr import warnings warnings.filterwarnings("ignore") # Loading the speechbrain emotion detection model learner = foreign_class( source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) # Building prediction function for gradio emotion_dict = { 'sad': 'Sad', 'hap': 'Happy', 'ang': 'Anger', 'fea': 'Fear', 'sur': 'Surprised', 'neu': 'Neutral' } def predict_emotion(audio): out_prob, score, index, text_lab = learner.classify_file(audio.name) return emotion_dict[text_lab[0]] # Loading gradio interface inputs = gr.inputs.Audio(label="Input Audio", type="file") outputs = "text" title = "ML Speech Emotion Detection" description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio." gr.Interface(predict_emotion, inputs, outputs, title=title, description=description).launch()