from speechbrain.pretrained.interfaces import foreign_class import gradio as gr import os import warnings warnings.filterwarnings("ignore") # Function to get the list of audio files in the 'rec/' directory def get_audio_files_list(directory="rec"): try: return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))] except FileNotFoundError: print("The 'rec' directory does not exist. Please make sure it is the correct path.") return [] # Loading the speechbrain emotion detection model learner = foreign_class( source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) # Building prediction function for Gradio emotion_dict = { 'sad': 'Sad', 'hap': 'Happy', 'ang': 'Anger', 'fea': 'Fear', 'sur': 'Surprised', 'neu': 'Neutral' } def predict_emotion(selected_audio): file_path = os.path.join("rec", selected_audio) out_prob, score, index, text_lab = learner.classify_file(file_path) emotion = emotion_dict[text_lab[0]] return emotion, file_path # Return both emotion and file path # Get the list of audio files for the dropdown audio_files_list = get_audio_files_list() # Loading Gradio interface inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list) outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")] title = "ML Speech Emotion Detection" description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio." interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description) interface.launch()