LLM-interaction / app.py
israel's picture
Update app.py
c76fb34 verified
raw
history blame
2.6 kB
import streamlit as st
import torch
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_name = "masakhane/zephyr-7b-gemma-sft-african-alpaca"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config)
pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
# import torch
# from transformers import pipeline
# pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
# messages = [
# {
# "role": "system",
# "content": "You are a friendly chatbot who answewrs question in given language",
# },
# {"role": "user", "content": "what is the 3 biggest countrys in Africa?"},
# ]
# prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
# print(outputs[0]["generated_text"])
if 'messages' not in st.session_state:
st.session_state.messages = [
{
"role": "system",
"content": "You are a friendly chatbot who answewrs question in given language",
},
]
def ask_model(question):
# Placeholder for model interaction logic
# You would replace this with actual code to query the model
st.session_state.messages.append({"role": "user", "content": f"{question}"})
prompt = pipe.tokenizer.apply_chat_template(st.session_state.messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"].split("<|assistant|>")[-1])
st.session_state.messages.append({"role": "assistant", "content": f"{outputs[0]['generated_text'].split('<|assistant|>')[-1]}"})
return st.session_state.messages
st.title('LLM Interaction Interface')
user_input = st.text_input("Ask a question:")
if user_input:
# This function is supposed to send the question to the LLM and get the response
response = ask_model(user_input)
st.text_area("Response:", value=response[-1]['content'], height=300, max_chars=None, help=None)
st.json({'value':response},expanded=False)