import streamlit as st import torch from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) model_name = "masakhane/zephyr-7b-gemma-sft-african-alpaca" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config) pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto") # import torch # from transformers import pipeline # pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating # messages = [ # { # "role": "system", # "content": "You are a friendly chatbot who answewrs question in given language", # }, # {"role": "user", "content": "what is the 3 biggest countrys in Africa?"}, # ] # prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) # print(outputs[0]["generated_text"]) if 'messages' not in st.session_state: st.session_state.messages = [ { "role": "system", "content": "You are a friendly chatbot who answewrs question in given language", }, ] def ask_model(question): # Placeholder for model interaction logic # You would replace this with actual code to query the model st.session_state.messages.append({"role": "user", "content": f"{question}"}) prompt = pipe.tokenizer.apply_chat_template(st.session_state.messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"].split("<|assistant|>")[-1]) st.session_state.messages.append({"role": "assistant", "content": f"{outputs[0]['generated_text'].split('<|assistant|>')[-1]}"}) return st.session_state.messages st.title('LLM Interaction Interface') user_input = st.text_input("Ask a question:") if user_input: # This function is supposed to send the question to the LLM and get the response response = ask_model(user_input) st.text_area("Response:", value=response[-1]['content'], height=300, max_chars=None, help=None) st.json({'value':response},expanded=False)