Spaces:
Runtime error
Runtime error
File size: 29,372 Bytes
9cdc61c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
# Prediction interface for Cog ⚙️
# https://cog.run/python
import os
import copy
import random
import subprocess
import numpy as np
import time
import torch
import torch.nn.functional as F
from PIL import ImageFont
from cog import BasePredictor, Input, Path, BaseModel
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
from diffusers.utils import load_image
from utils import PhotoMakerStableDiffusionXLPipeline
from utils.style_template import styles
from utils.gradio_utils import (
AttnProcessor2_0 as AttnProcessor,
) # with torch2 installed
from utils.gradio_utils import cal_attn_mask_xl
from utils.utils import get_comic
MODEL_URL = "https://weights.replicate.delivery/default/HVision_NKU/StoryDiffusion.tar"
MODEL_CACHE = "model_weights"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
global sa32, sa64
global write
global height, width
"""
# load and upload the weights to replicate.delivery for faster booting on Replicate
models_dict = {
"RealVision": "SG161222/RealVisXL_V4.0",
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",
}
# photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"
pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["Unstable"],
torch_dtype=torch.float16,
use_safetensors=False,
)
pipe_unstable.save_pretrained(f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y")
pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["RealVision"], torch_dtype=torch.float16, use_safetensors=True
)
pipe_realvision.save_pretrained(f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0")
"""
class ModelOutput(BaseModel):
comic: Path
individual_images: list[Path]
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def apply_style_positive(style_name: str, positive: str):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
def apply_style(style_name: str, positives: list, negative: str = ""):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return [
p.replace("{prompt}", positive) for positive in positives
], n + " " + negative
def set_attention_processor(unet, id_length, is_ipadapter=False):
global total_count
total_count = 0
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if name.startswith("up_blocks"):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
total_count += 1
else:
attn_procs[name] = AttnProcessor()
else:
if is_ipadapter:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1,
num_tokens=4,
).to(unet.device, dtype=torch.float16)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
print("Successfully load paired self-attention")
print(f"Number of the processor : {total_count}")
#################################################
########Consistent Self-Attention################
#################################################
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
id_length=4,
device="cuda",
dtype=torch.float16,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
global total_count, attn_count, cur_step, mask1024, mask4096
global sa32, sa64
global write
global height, width
if write:
self.id_bank[cur_step] = [
hidden_states[: self.id_length],
hidden_states[self.id_length :],
]
else:
encoder_hidden_states = torch.cat(
(
self.id_bank[cur_step][0].to(self.device),
hidden_states[:1],
self.id_bank[cur_step][1].to(self.device),
hidden_states[1:],
)
)
# skip in early step
if cur_step < 5:
hidden_states = self.__call2__(
attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 20:
rand_num = 0.3
else:
rand_num = 0.1
if random_number > rand_num:
if not write:
if hidden_states.shape[1] == (height // 32) * (width // 32):
attention_mask = mask1024[
mask1024.shape[0] // self.total_length * self.id_length :
]
else:
attention_mask = mask4096[
mask4096.shape[0] // self.total_length * self.id_length :
]
else:
if hidden_states.shape[1] == (height // 32) * (width // 32):
attention_mask = mask1024[
: mask1024.shape[0] // self.total_length * self.id_length,
: mask1024.shape[0] // self.total_length * self.id_length,
]
else:
attention_mask = mask4096[
: mask4096.shape[0] // self.total_length * self.id_length,
: mask4096.shape[0] // self.total_length * self.id_length,
]
hidden_states = self.__call1__(
attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
else:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
mask1024, mask4096 = cal_attn_mask_xl(
self.total_length,
self.id_length,
sa32,
sa64,
height,
width,
device=self.device,
dtype=self.dtype,
)
return hidden_states
def __call1__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
total_batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
total_batch_size, channel, height * width
).transpose(1, 2)
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.view(-1, img_nums, nums_token, channel).reshape(
-1, img_nums * nums_token, channel
)
batch_size, sequence_length, _ = hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(
-1, self.id_length + 1, nums_token, channel
).reshape(-1, (self.id_length + 1) * nums_token, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
total_batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
total_batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
# print(hidden_states.shape)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, channel = hidden_states.shape
# print(hidden_states.shape)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(
-1, self.id_length + 1, sequence_length, channel
).reshape(-1, (self.id_length + 1) * sequence_length, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
models_dict = {
"RealVision": "SG161222/RealVisXL_V4.0",
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",
}
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"
self.sdxl_pipe_unstable = StableDiffusionXLPipeline.from_pretrained(
f"{MODEL_CACHE}/Unstable/sdxl/stablediffusionapi/sdxl-unstable-diffusers-y",
torch_dtype=torch.float16,
)
self.sdxl_pipe_realvision = StableDiffusionXLPipeline.from_pretrained(
f"{MODEL_CACHE}/RealVision/sdxl/SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
)
self.pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y",
torch_dtype=torch.float16,
use_safetensors=False,
)
self.pipe_unstable.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img", # define the trigger word
)
self.pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0",
torch_dtype=torch.float16,
use_safetensors=True,
)
self.pipe_realvision.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img", # define the trigger word
)
self.pipe_realvision.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
self.pipe_realvision.fuse_lora()
@torch.inference_mode()
def predict(
self,
sd_model: str = Input(
description="Choose a model",
choices=["Unstable", "RealVision"],
default="Unstable",
),
ref_image: Path = Input(
description="Reference image for the character",
default=None,
),
character_description: str = Input(
description="General description of the character. If ref_image above is provided, making sure to follow the class word you want to customize with the trigger word 'img', such as: 'man img' or 'woman img' or 'girl img'",
default="a man, wearing black suit",
),
negative_prompt: str = Input(
description="Describe things you do not want to see in the output",
default="bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
),
comic_description: str = Input(
description="Comic Description. Each frame is divided by a new line. Only the first 10 prompts are valid for demo speed! For comic_description NOT using ref_image: (1) Support Typesetting Style and Captioning. By default, the prompt is used as the caption for each image. If you need to change the caption, add a '#' at the end of each line. Only the part after the '#' will be added as a caption to the image. (2) The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the '[NC]' at the beginning of the line.",
default="at home, read new paper #at home, The newspaper says there is a treasure house in the forest.\non the road, near the forest\n[NC] The car on the road, near the forest #He drives to the forest in search of treasure.\n[NC]A tiger appeared in the forest, at night \nvery frightened, open mouth, in the forest, at night\nrunning very fast, in the forest, at night\n[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!\nin the house filled with treasure, laughing, at night #He is overjoyed inside the house.",
),
style_name: str = Input(
description="Style template",
choices=STYLE_NAMES,
default=DEFAULT_STYLE_NAME,
),
comic_style: str = Input(
description="Select the comic style for the combined comic",
choices=["Four Pannel", "Classic Comic Style"],
default="Classic Comic Style",
),
style_strength_ratio: int = Input(
description="Style strength of Ref Image (%), only used if ref_image is provided",
default=20,
ge=15,
le=50,
),
image_width: int = Input(
description="Width of output image",
choices=[
256,
288,
320,
352,
384,
416,
448,
480,
512,
544,
576,
608,
640,
672,
704,
736,
768,
800,
832,
864,
896,
928,
960,
992,
1024,
],
default=768,
),
image_height: int = Input(
description="Height of output image",
choices=[
256,
288,
320,
352,
384,
416,
448,
480,
512,
544,
576,
608,
640,
672,
704,
736,
768,
800,
832,
864,
896,
928,
960,
992,
1024,
],
default=768,
),
num_steps: int = Input(
description="Number of sample steps", ge=20, le=50, default=25
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=0.1, le=10, default=5
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
sa32_setting: float = Input(
description="The degree of Paired Attention at 32 x 32 self-attention layers",
default=0.5,
ge=0,
le=1.0,
),
sa64_setting: float = Input(
description="The degree of Paired Attention at 64 x 64 self-attention layers",
default=0.5,
ge=0,
le=1.0,
),
num_ids: int = Input(
description="Number of id images in total images. This should not exceed total number of line-separated prompts",
default=3,
),
output_format: str = Input(
description="Format of the output images",
choices=["webp", "jpg", "png"],
default="webp",
),
output_quality: int = Input(
description="Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality",
default=80,
ge=0,
le=100,
),
) -> ModelOutput:
"""Run a single prediction on the model"""
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
global sa32, sa64
global write
global height, width
assert (
len(character_description.strip()) > 0
), "Please provide the description of the character."
if ref_image is not None:
assert (
"img" in character_description
), f"When using ref_image, please add the trigger word 'img' behind the class word you want to customize, such as: man img or woman img"
assert (
"[NC]" not in character_description
), "You should not use trigger word [NC] when ref_image is provided."
height = image_height
width = image_width
id_length = num_ids
sa32 = sa32_setting
sa64 = sa64_setting
clipped_prompts = comic_description.splitlines()[:10]
print(clipped_prompts)
prompts = [
(
character_description + "," + prompt
if "[NC]" not in prompt
else prompt.replace("[NC]", "")
)
for prompt in clipped_prompts
]
print(prompts)
prompts = [
prompt.rpartition("#")[0].strip() if "#" in prompt else prompt.strip()
for prompt in prompts
]
print(prompts)
assert id_length <= len(
prompts
), "id_length should not exceed total number of line-separated prompts"
id_prompts = prompts[:id_length]
real_prompts = prompts[id_length:]
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
device = "cuda:0"
setup_seed(seed)
generator = torch.Generator(device=device).manual_seed(seed)
torch.cuda.empty_cache()
model_type = "original" if ref_image is None else "Photomaker"
if model_type == "original":
pipe = (
self.sdxl_pipe_realvision
if style_name == "(No style)"
else self.sdxl_pipe_unstable
)
pipe = pipe.to(device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
else:
if sd_model != "RealVision" and style_name != "(No style)":
pipe = self.pipe_unstable.to(device)
else:
pipe = self.pipe_realvision.to(device)
pipe.id_encoder.to(device)
write = True
cur_step = 0
attn_count = 0
set_attention_processor(pipe.unet, id_length, is_ipadapter=False)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
curmodel_type = sd_model + "-" + model_type + "" + str(id_length)
id_prompts, negative_prompt = apply_style(
style_name, id_prompts, negative_prompt
)
total_results = []
if model_type == "original":
id_images = pipe(
id_prompts,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images
else:
input_id_images = [load_image(str(ref_image))]
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
id_images = pipe(
id_prompts,
input_id_images=input_id_images,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images
total_results = id_images + total_results
real_images = []
write = False
for real_prompt in real_prompts:
cur_step = 0
real_prompt = apply_style_positive(style_name, real_prompt)
if model_type == "original":
real_images.append(
pipe(
real_prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images[0]
)
else:
real_images.append(
pipe(
real_prompt,
input_id_images=input_id_images,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images[0]
)
total_results = [real_images[-1]] + total_results
captions = clipped_prompts
captions = [caption.replace("[NC]", "") for caption in captions]
captions = [
caption.split("#")[-1].strip() if "#" in caption else caption.strip()
for caption in captions
]
comic = get_comic(
id_images + real_images,
comic_style,
captions=captions,
font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45)),
)
extension = output_format.lower()
extension = "jpeg" if extension == "jpg" else extension
comic_out = f"/tmp/comic.{extension}"
comic[0].save(comic_out)
save_params = {"format": extension.upper()}
if not output_format == "png":
save_params["quality"] = output_quality
save_params["optimize"] = True
output_paths = []
for index, sample in enumerate(total_results[::-1]):
output_filename = f"/tmp/out-{index}.{extension}"
sample.save(output_filename, **save_params)
output_paths.append(Path(output_filename))
del pipe
return ModelOutput(comic=Path(comic_out), individual_images=output_paths)
|