import nltk nltk.download('stopwords') # from transformers import AutoTokenizer # from transformers import AutoModelForSeq2SeqLM import plotly.graph_objs as go from transformers import pipeline import random import gradio as gr from tree import generate_subplot1, generate_subplot2 from paraphraser import generate_paraphrase from lcs import find_common_subsequences, find_common_gram_positions from highlighter import highlight_common_words, highlight_common_words_dict, reparaphrased_sentences_html from entailment import analyze_entailment from masking_methods import mask_non_stopword, mask_non_stopword_pseudorandom, high_entropy_words from sampling_methods import sample_word from detectability import SentenceDetectabilityCalculator from distortion import SentenceDistortionCalculator from euclidean_distance import SentenceEuclideanDistanceCalculator from threeD_plot import gen_three_D_plot # Function for the Gradio interface def model(prompt): user_prompt = prompt paraphrased_sentences = generate_paraphrase(user_prompt) analyzed_paraphrased_sentences, selected_sentences, discarded_sentences = analyze_entailment(user_prompt, paraphrased_sentences, 0.7) print(analyze_entailment(user_prompt, paraphrased_sentences, 0.7)) common_grams = find_common_subsequences(user_prompt, selected_sentences) subsequences = [subseq for _, subseq in common_grams] common_grams_position = find_common_gram_positions(selected_sentences, subsequences) masked_sentences = [] masked_words = [] masked_logits = [] for sentence in paraphrased_sentences: masked_sent, logits, words = mask_non_stopword(sentence) masked_sentences.append(masked_sent) masked_words.append(words) masked_logits.append(logits) masked_sent, logits, words = mask_non_stopword_pseudorandom(sentence) masked_sentences.append(masked_sent) masked_words.append(words) masked_logits.append(logits) masked_sent, logits, words = high_entropy_words(sentence, common_grams) masked_sentences.append(masked_sent) masked_words.append(words) masked_logits.append(logits) sampled_sentences = [] for masked_sent, words, logits in zip(masked_sentences, masked_words, masked_logits): sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='inverse_transform', temperature=1.0)) sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='exponential_minimum', temperature=1.0)) sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='temperature', temperature=1.0)) sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='greedy', temperature=1.0)) colors = ["red", "blue", "brown", "green"] def select_color(): return random.choice(colors) highlight_info = [(word, select_color()) for _, word in common_grams] highlighted_user_prompt = highlight_common_words(common_grams, [user_prompt], "Non-melting Points in the User Prompt") highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences") highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences") trees1 = [] trees2 = [] masked_index = 0 sampled_index = 0 for i, sentence in enumerate(paraphrased_sentences): next_masked_sentences = masked_sentences[masked_index:masked_index + 3] next_sampled_sentences = sampled_sentences[sampled_index:sampled_index + 12] tree1 = generate_subplot1(sentence, next_masked_sentences, highlight_info, common_grams) trees1.append(tree1) tree2 = generate_subplot2(next_masked_sentences, next_sampled_sentences, highlight_info, common_grams) trees2.append(tree2) masked_index += 3 sampled_index += 12 reparaphrased_sentences = generate_paraphrase(sampled_sentences) len_reparaphrased_sentences = len(reparaphrased_sentences) reparaphrased_sentences_list = [] # Process the sentences in batches of 10 for i in range(0, len_reparaphrased_sentences, 10): # Get the current batch of 10 sentences batch = reparaphrased_sentences[i:i + 10] # Check if the batch has exactly 10 sentences if len(batch) == 10: # Call the display_sentences function and store the result in the list html_block = reparaphrased_sentences_html(batch) reparaphrased_sentences_list.append(html_block) distortion_list = [] detectability_list = [] euclidean_dist_list = [] distortion_calculator = SentenceDistortionCalculator(user_prompt, reparaphrased_sentences) distortion_calculator.calculate_all_metrics() distortion_calculator.normalize_metrics() distortion_calculator.calculate_combined_distortion() distortion = distortion_calculator.get_combined_distortions() for each in distortion.items(): distortion_list.append(each[1]) detectability_calculator = SentenceDetectabilityCalculator(user_prompt, reparaphrased_sentences) detectability_calculator.calculate_all_metrics() detectability_calculator.normalize_metrics() detectability_calculator.calculate_combined_detectability() detectability = detectability_calculator.get_combined_detectabilities() for each in detectability.items(): detectability_list.append(each[1]) euclidean_dist_calculator = SentenceEuclideanDistanceCalculator(user_prompt, reparaphrased_sentences) euclidean_dist_calculator.calculate_all_metrics() euclidean_dist_calculator.normalize_metrics() euclidean_dist_calculator.get_normalized_metrics() euclidean_dist = detectability_calculator.get_combined_detectabilities() for each in euclidean_dist.items(): euclidean_dist_list.append(each[1]) three_D_plot = gen_three_D_plot(detectability_list, distortion_list, euclidean_dist_list) return [highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + trees1 + trees2 + reparaphrased_sentences_list + [three_D_plot] with gr.Blocks(theme=gr.themes.Monochrome()) as demo: gr.Markdown("# **AIISC Watermarking Model**") with gr.Row(): user_input = gr.Textbox(label="User Prompt") with gr.Row(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") with gr.Row(): highlighted_user_prompt = gr.HTML() with gr.Row(): with gr.Tabs(): with gr.TabItem("Paraphrased Sentences"): highlighted_accepted_sentences = gr.HTML() with gr.TabItem("Discarded Sentences"): highlighted_discarded_sentences = gr.HTML() # Adding labels before the tree plots with gr.Row(): gr.Markdown("### Where to Watermark?") # Label for masked sentences trees with gr.Row(): with gr.Tabs(): tree1_tabs = [] for i in range(10): # Adjust this range according to the number of trees with gr.TabItem(f"Sentence {i+1}"): tree1 = gr.Plot() tree1_tabs.append(tree1) with gr.Row(): gr.Markdown("### How to Watermark?") # Label for sampled sentences trees with gr.Row(): with gr.Tabs(): tree2_tabs = [] for i in range(10): # Adjust this range according to the number of trees with gr.TabItem(f"Sentence {i+1}"): tree2 = gr.Plot() tree2_tabs.append(tree2) # Adding the "Re-paraphrased Sentences" section with gr.Row(): gr.Markdown("### Re-paraphrased Sentences") # Label for re-paraphrased sentences # Adding tabs for the re-paraphrased sentences with gr.Row(): with gr.Tabs(): reparaphrased_sentences_tabs = [] for i in range(120): # 120 tabs for 120 batches of sentences with gr.TabItem(f"Sentence {i+1}"): reparaphrased_sent_html = gr.HTML() # Placeholder for each batch reparaphrased_sentences_tabs.append(reparaphrased_sent_html) with gr.Row(): gr.Markdown("### 3D Plot for Sweet Spot") with gr.Row(): three_D_plot = gr.Plot() submit_button.click(model, inputs=user_input, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot]) clear_button.click(lambda: "", inputs=None, outputs=user_input) clear_button.click(lambda: "", inputs=None, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot]) demo.launch(share=True)