Spaces:
Running
Running
File size: 3,814 Bytes
0f77492 d05e806 3f70034 2a4fa08 3f70034 7eaa482 3f70034 083d0cc c93db3f 3f70034 fbdda8d 3f70034 847af29 3f70034 37c3162 3f70034 dd65208 4ec36d4 3f70034 c49091d 3f70034 d299e20 33793aa 2e05e59 9e7cb60 6855222 a97e9b5 c93db3f 2ba8130 c93db3f 2ba8130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Whisper-WebUI
A Gradio-based browser interface for Whisper. You can use it as an Easy Subtitle Generator!
![Whisper WebUI](https://github.com/jhj0517/Whsiper-WebUI/blob/master/screenshot.png)
## Notebook
If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)!
# Feature
- Generate subtitles from various sources, including :
- Files
- Youtube
- Microphone
- Currently supported subtitle formats :
- SRT
- WebVTT
- Speech to Text Translation
- From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature )
- Text to Text Translation
- Translate subtitle files using Facebook NLLB models
# Installation and Running
## Prerequisite
To run Whisper, you need to have `git`, `python` version 3.8 ~ 3.10 and `FFmpeg`.
Please follow the links below to install the necessary software:
- git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
- python : [https://www.python.org/downloads/](https://www.python.org/downloads/)
- FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**
## Automatic Installation
If you have satisfied the prerequisites listed above, you are now ready to start Whisper-WebUI.
1. Run `Install.bat` from Windows Explorer as a regular, non-administrator user.
2. After installation, run the `start-webui.bat`. (It will automatically download the model if it is not already installed.)
3. Open your web browser and go to `http://localhost:7860`
( If you're running another Web-UI, it will be hosted on a different port , such as `localhost:7861`, `localhost:7862`, and so on )
And you can also run the project with command line arguments if you like by running `user-start-webui.bat`, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments.
# VRAM Usages
This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.
According to faster-whisper, the efficiency of the optimized whisper model is as follows:
| Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
|-------------------|-----------|-----------|-------|-----------------|-----------------|
| openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
| faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
If you want to use the original Open AI whisper implementation instead of optimized whisper, you can set the command line argument `DISABLE_FASTER_WHISPER` to `True`. See the [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more information.
## Available models
This is Whisper's original VRAM usage table for models.
| Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
| tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
| base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
| small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
| medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
| large | 1550 M | N/A | `large` | ~10 GB | 1x |
`.en` models are for English only, and the cool thing is that you can use the `Translate to English` option from the "large" models!
|