File size: 13,340 Bytes
eeb8996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e901c63
 
eeb8996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56c9fb
eeb8996
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os

import tqdm
import time
import numpy as np
from typing import BinaryIO, Union, Tuple
from datetime import datetime, timedelta

import faster_whisper
import whisper
import torch
import gradio as gr

from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio


class FasterWhisperInference(BaseInterface):
    def __init__(self):
        super().__init__()
        self.current_model_size = None
        self.model = None
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.translatable_models = ["large", "large-v1", "large-v2"]
        self.default_beam_size = 5
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

    def transcribe_file(self,
                        fileobjs: list,
                        model_size: str,
                        lang: str,
                        subformat: str,
                        istranslate: bool,
                        add_timestamp: bool,
                        progress=gr.Progress()
                        ) -> str:
        """
        Write subtitle file from Files

        Parameters
        ----------
        fileobjs: list
            List of files to transcribe from gr.Files()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.

        Returns
        ----------
        String to return to gr.Textbox()
        """
        try:
            if model_size != self.current_model_size or self.model is None:
                self.initialize_model(model_size=model_size, progress=progress)

            if lang == "Automatic Detection":
                lang = None

            files_info = {}
            for fileobj in fileobjs:
                transcribed_segments, time_for_task = self.transcribe(
                    audio=fileobj.name,
                    lang=lang,
                    istranslate=istranslate,
                    progress=progress
                )

                file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
                file_name = safe_filename(file_name)
                subtitle = self.generate_and_write_subtitle(
                    file_name=file_name,
                    transcribed_segments=transcribed_segments,
                    add_timestamp=add_timestamp,
                    subformat=subformat
                )
                files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}

            total_result = ''
            total_time = 0
            for file_name, info in files_info.items():
                total_result += '------------------------------------\n'
                total_result += f'{file_name}\n\n'
                total_result += f'{info["subtitle"]}'
                total_time += info["time_for_task"]

            return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"

        except Exception as e:
            print(f"Error transcribing file on line {e}")
        finally:
            self.release_cuda_memory()
            self.remove_input_files([fileobj.name for fileobj in fileobjs])

    def transcribe_youtube(self,
                           youtubelink: str,
                           model_size: str,
                           lang: str,
                           subformat: str,
                           istranslate: bool,
                           add_timestamp: bool,
                           progress=gr.Progress()
                           ) -> str:
        """
        Write subtitle file from Youtube

        Parameters
        ----------
        youtubelink: str
            Link of Youtube to transcribe from gr.Textbox()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.

        Returns
        ----------
        String to return to gr.Textbox()
        """
        try:
            if model_size != self.current_model_size or self.model is None:
                self.initialize_model(model_size=model_size, progress=progress)

            if lang == "Automatic Detection":
                lang = None

            progress(0, desc="Loading Audio from Youtube..")
            yt = get_ytdata(youtubelink)
            audio = get_ytaudio(yt)

            transcribed_segments, time_for_task = self.transcribe(
                audio=audio,
                lang=lang,
                istranslate=istranslate,
                progress=progress
            )

            progress(1, desc="Completed!")

            file_name = safe_filename(yt.title)
            subtitle = self.generate_and_write_subtitle(
                file_name=file_name,
                transcribed_segments=transcribed_segments,
                add_timestamp=add_timestamp,
                subformat=subformat
            )
            return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
        except Exception as e:
            return f"Error: {str(e)}"
        finally:
            yt = get_ytdata(youtubelink)
            file_path = get_ytaudio(yt)
            self.release_cuda_memory()
            self.remove_input_files([file_path])

    def transcribe_mic(self,
                       micaudio: str,
                       model_size: str,
                       lang: str,
                       subformat: str,
                       istranslate: bool,
                       progress=gr.Progress()
                       ) -> str:
        """
        Write subtitle file from microphone

        Parameters
        ----------
        micaudio: str
            Audio file path from gr.Microphone()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        progress: gr.Progress
            Indicator to show progress directly in gradio.

        Returns
        ----------
        String to return to gr.Textbox()
        """
        try:
            if model_size != self.current_model_size or self.model is None:
                self.initialize_model(model_size=model_size, progress=progress)

            if lang == "Automatic Detection":
                lang = None

            progress(0, desc="Loading Audio..")

            transcribed_segments, time_for_task = self.transcribe(
                audio=micaudio,
                lang=lang,
                istranslate=istranslate,
                progress=progress
            )
            progress(1, desc="Completed!")

            subtitle = self.generate_and_write_subtitle(
                file_name="Mic",
                transcribed_segments=transcribed_segments,
                add_timestamp=True,
                subformat=subformat
            )
            return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
        except Exception as e:
            return f"Error: {str(e)}"
        finally:
            self.release_cuda_memory()
            self.remove_input_files([micaudio])

    def transcribe(self,
                   audio: Union[str, BinaryIO, np.ndarray],
                   lang: str,
                   istranslate: bool,
                   progress: gr.Progress
                   ) -> Tuple[list, float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        progress: gr.Progress
            Indicator to show progress directly in gradio.

        Returns
        ----------
        segments_result: list[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        segments, info = self.model.transcribe(
            audio=audio,
            language=lang,
            beam_size=self.default_beam_size,
            task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe"
        )
        progress(0, desc="Loading audio..")
        total_frames = self.get_total_frames(audio=audio, progress=progress)

        segments_result = []
        for segment in segments:
            progress(segment.seek / total_frames, desc="Transcribing..")
            segments_result.append({
                "start": segment.start,
                "end": segment.end,
                "text": segment.text
            })

        elapsed_time = time.time() - start_time
        return segments_result, elapsed_time

    def initialize_model(self,
                         model_size: str,
                         progress: gr.Progress
                         ):
        """
        Initialize model if it doesn't match with current model size
        """
        progress(0, desc="Initializing Model..")
        self.current_model_size = model_size
        self.model = faster_whisper.WhisperModel(
            device=self.device,
            model_size_or_path=model_size,
            download_root=os.path.join("models", "Whisper", "faster-whisper"),
            compute_type="float16"
        )

    def get_total_frames(self,
                         audio: Union[str, BinaryIO],
                         progress: gr.Progress
                         ) -> float:
        """
        This method is only for tracking the progress.
        Returns total frames to track progress.
        """
        progress(0, desc="Loading audio..")
        decoded_audio = faster_whisper.decode_audio(audio)
        features = self.model.feature_extractor(decoded_audio)
        content_frames = features.shape[-1] - self.model.feature_extractor.nb_max_frames
        return content_frames

    @staticmethod
    def generate_and_write_subtitle(file_name: str,
                                    transcribed_segments: list,
                                    add_timestamp: bool,
                                    subformat: str,
                                    ) -> str:
        """
        This method writes subtitle file and returns str to gr.Textbox
        """
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        if add_timestamp:
            output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
        else:
            output_path = os.path.join("outputs", f"{file_name}")

        if subformat == "SRT":
            subtitle = get_srt(transcribed_segments)
            write_file(subtitle, f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(transcribed_segments)
            write_file(subtitle, f"{output_path}.vtt")
        return subtitle

    @staticmethod
    def format_time(elapsed_time: float) -> str:
        hours, rem = divmod(elapsed_time, 3600)
        minutes, seconds = divmod(rem, 60)

        time_str = ""
        if hours:
            time_str += f"{hours} hours "
        if minutes:
            time_str += f"{minutes} minutes "
        seconds = round(seconds)
        time_str += f"{seconds} seconds"

        return time_str.strip()