Spaces:
Running
Running
jhj0517
commited on
Commit
β’
e29f6b4
1
Parent(s):
58c7e65
add advanced parameter tab
Browse files- app.py +21 -3
- modules/faster_whisper_inference.py +72 -6
- modules/whisper_Inference.py +71 -5
app.py
CHANGED
@@ -54,14 +54,20 @@ class App:
|
|
54 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
55 |
with gr.Row():
|
56 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
|
|
|
|
|
|
|
|
57 |
with gr.Row():
|
58 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
59 |
with gr.Row():
|
60 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
61 |
btn_openfolder = gr.Button('π', scale=2)
|
62 |
|
|
|
|
|
63 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
64 |
-
inputs=
|
65 |
outputs=[tb_indicator])
|
66 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
67 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
@@ -86,14 +92,20 @@ class App:
|
|
86 |
with gr.Row():
|
87 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
88 |
interactive=True)
|
|
|
|
|
|
|
|
|
89 |
with gr.Row():
|
90 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
91 |
with gr.Row():
|
92 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
93 |
btn_openfolder = gr.Button('π', scale=2)
|
94 |
|
|
|
|
|
95 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
96 |
-
inputs=
|
97 |
outputs=[tb_indicator])
|
98 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
99 |
outputs=[img_thumbnail, tb_title, tb_description])
|
@@ -111,14 +123,20 @@ class App:
|
|
111 |
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
|
112 |
with gr.Row():
|
113 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
|
|
|
|
|
|
|
|
114 |
with gr.Row():
|
115 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
116 |
with gr.Row():
|
117 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
118 |
btn_openfolder = gr.Button('π', scale=2)
|
119 |
|
|
|
|
|
120 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
121 |
-
inputs=
|
122 |
outputs=[tb_indicator])
|
123 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
124 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
54 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
55 |
with gr.Row():
|
56 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
57 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
58 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
59 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
60 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
61 |
with gr.Row():
|
62 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
63 |
with gr.Row():
|
64 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
65 |
btn_openfolder = gr.Button('π', scale=2)
|
66 |
|
67 |
+
params = [input_file, dd_model, dd_lang, dd_subformat, cb_translate, cb_timestamp]
|
68 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
69 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
70 |
+
inputs=params + advanced_params,
|
71 |
outputs=[tb_indicator])
|
72 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
73 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
92 |
with gr.Row():
|
93 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
94 |
interactive=True)
|
95 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
96 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
97 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
98 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
99 |
with gr.Row():
|
100 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
101 |
with gr.Row():
|
102 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
103 |
btn_openfolder = gr.Button('π', scale=2)
|
104 |
|
105 |
+
params = [tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate, cb_timestamp]
|
106 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
107 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
108 |
+
inputs=params + advanced_params,
|
109 |
outputs=[tb_indicator])
|
110 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
111 |
outputs=[img_thumbnail, tb_title, tb_description])
|
|
|
123 |
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
|
124 |
with gr.Row():
|
125 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
126 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
127 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
128 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
129 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
130 |
with gr.Row():
|
131 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
132 |
with gr.Row():
|
133 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
134 |
btn_openfolder = gr.Button('π', scale=2)
|
135 |
|
136 |
+
params = [mic_input, dd_model, dd_lang, dd_subformat, cb_translate]
|
137 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
138 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
139 |
+
inputs=params + advanced_params,
|
140 |
outputs=[tb_indicator])
|
141 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
142 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
modules/faster_whisper_inference.py
CHANGED
@@ -34,6 +34,9 @@ class FasterWhisperInference(BaseInterface):
|
|
34 |
subformat: str,
|
35 |
istranslate: bool,
|
36 |
add_timestamp: bool,
|
|
|
|
|
|
|
37 |
progress=gr.Progress()
|
38 |
) -> str:
|
39 |
"""
|
@@ -54,6 +57,15 @@ class FasterWhisperInference(BaseInterface):
|
|
54 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
55 |
add_timestamp: bool
|
56 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
progress: gr.Progress
|
58 |
Indicator to show progress directly in gradio.
|
59 |
|
@@ -74,6 +86,9 @@ class FasterWhisperInference(BaseInterface):
|
|
74 |
audio=fileobj.name,
|
75 |
lang=lang,
|
76 |
istranslate=istranslate,
|
|
|
|
|
|
|
77 |
progress=progress
|
78 |
)
|
79 |
|
@@ -110,6 +125,9 @@ class FasterWhisperInference(BaseInterface):
|
|
110 |
subformat: str,
|
111 |
istranslate: bool,
|
112 |
add_timestamp: bool,
|
|
|
|
|
|
|
113 |
progress=gr.Progress()
|
114 |
) -> str:
|
115 |
"""
|
@@ -130,6 +148,15 @@ class FasterWhisperInference(BaseInterface):
|
|
130 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
131 |
add_timestamp: bool
|
132 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
progress: gr.Progress
|
134 |
Indicator to show progress directly in gradio.
|
135 |
|
@@ -152,6 +179,9 @@ class FasterWhisperInference(BaseInterface):
|
|
152 |
audio=audio,
|
153 |
lang=lang,
|
154 |
istranslate=istranslate,
|
|
|
|
|
|
|
155 |
progress=progress
|
156 |
)
|
157 |
|
@@ -168,10 +198,17 @@ class FasterWhisperInference(BaseInterface):
|
|
168 |
except Exception as e:
|
169 |
return f"Error: {str(e)}"
|
170 |
finally:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
def transcribe_mic(self,
|
177 |
micaudio: str,
|
@@ -179,6 +216,9 @@ class FasterWhisperInference(BaseInterface):
|
|
179 |
lang: str,
|
180 |
subformat: str,
|
181 |
istranslate: bool,
|
|
|
|
|
|
|
182 |
progress=gr.Progress()
|
183 |
) -> str:
|
184 |
"""
|
@@ -197,6 +237,15 @@ class FasterWhisperInference(BaseInterface):
|
|
197 |
istranslate: bool
|
198 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
199 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
progress: gr.Progress
|
201 |
Indicator to show progress directly in gradio.
|
202 |
|
@@ -217,6 +266,9 @@ class FasterWhisperInference(BaseInterface):
|
|
217 |
audio=micaudio,
|
218 |
lang=lang,
|
219 |
istranslate=istranslate,
|
|
|
|
|
|
|
220 |
progress=progress
|
221 |
)
|
222 |
progress(1, desc="Completed!")
|
@@ -238,6 +290,9 @@ class FasterWhisperInference(BaseInterface):
|
|
238 |
audio: Union[str, BinaryIO, np.ndarray],
|
239 |
lang: str,
|
240 |
istranslate: bool,
|
|
|
|
|
|
|
241 |
progress: gr.Progress
|
242 |
) -> Tuple[list, float]:
|
243 |
"""
|
@@ -252,6 +307,15 @@ class FasterWhisperInference(BaseInterface):
|
|
252 |
istranslate: bool
|
253 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
254 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
progress: gr.Progress
|
256 |
Indicator to show progress directly in gradio.
|
257 |
|
@@ -269,8 +333,10 @@ class FasterWhisperInference(BaseInterface):
|
|
269 |
segments, info = self.model.transcribe(
|
270 |
audio=audio,
|
271 |
language=lang,
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
)
|
275 |
progress(0, desc="Loading audio..")
|
276 |
|
|
|
34 |
subformat: str,
|
35 |
istranslate: bool,
|
36 |
add_timestamp: bool,
|
37 |
+
beam_size: int,
|
38 |
+
log_prob_threshold: float,
|
39 |
+
no_speech_threshold: float,
|
40 |
progress=gr.Progress()
|
41 |
) -> str:
|
42 |
"""
|
|
|
57 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
58 |
add_timestamp: bool
|
59 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
60 |
+
beam_size: int
|
61 |
+
Int value from gr.Number() that is used for decoding option.
|
62 |
+
log_prob_threshold: float
|
63 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
64 |
+
below this value, treat as failed.
|
65 |
+
no_speech_threshold: float
|
66 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
67 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
68 |
+
consider the segment as silent.
|
69 |
progress: gr.Progress
|
70 |
Indicator to show progress directly in gradio.
|
71 |
|
|
|
86 |
audio=fileobj.name,
|
87 |
lang=lang,
|
88 |
istranslate=istranslate,
|
89 |
+
beam_size=beam_size,
|
90 |
+
log_prob_threshold=log_prob_threshold,
|
91 |
+
no_speech_threshold=no_speech_threshold,
|
92 |
progress=progress
|
93 |
)
|
94 |
|
|
|
125 |
subformat: str,
|
126 |
istranslate: bool,
|
127 |
add_timestamp: bool,
|
128 |
+
beam_size: int,
|
129 |
+
log_prob_threshold: float,
|
130 |
+
no_speech_threshold: float,
|
131 |
progress=gr.Progress()
|
132 |
) -> str:
|
133 |
"""
|
|
|
148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
149 |
add_timestamp: bool
|
150 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
151 |
+
beam_size: int
|
152 |
+
Int value from gr.Number() that is used for decoding option.
|
153 |
+
log_prob_threshold: float
|
154 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
155 |
+
below this value, treat as failed.
|
156 |
+
no_speech_threshold: float
|
157 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
158 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
159 |
+
consider the segment as silent.
|
160 |
progress: gr.Progress
|
161 |
Indicator to show progress directly in gradio.
|
162 |
|
|
|
179 |
audio=audio,
|
180 |
lang=lang,
|
181 |
istranslate=istranslate,
|
182 |
+
beam_size=beam_size,
|
183 |
+
log_prob_threshold=log_prob_threshold,
|
184 |
+
no_speech_threshold=no_speech_threshold,
|
185 |
progress=progress
|
186 |
)
|
187 |
|
|
|
198 |
except Exception as e:
|
199 |
return f"Error: {str(e)}"
|
200 |
finally:
|
201 |
+
try:
|
202 |
+
if 'yt' not in locals():
|
203 |
+
yt = get_ytdata(youtubelink)
|
204 |
+
file_path = get_ytaudio(yt)
|
205 |
+
else:
|
206 |
+
file_path = get_ytaudio(yt)
|
207 |
+
|
208 |
+
self.release_cuda_memory()
|
209 |
+
self.remove_input_files([file_path])
|
210 |
+
except Exception as cleanup_error:
|
211 |
+
pass
|
212 |
|
213 |
def transcribe_mic(self,
|
214 |
micaudio: str,
|
|
|
216 |
lang: str,
|
217 |
subformat: str,
|
218 |
istranslate: bool,
|
219 |
+
beam_size: int,
|
220 |
+
log_prob_threshold: float,
|
221 |
+
no_speech_threshold: float,
|
222 |
progress=gr.Progress()
|
223 |
) -> str:
|
224 |
"""
|
|
|
237 |
istranslate: bool
|
238 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
239 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
240 |
+
beam_size: int
|
241 |
+
Int value from gr.Number() that is used for decoding option.
|
242 |
+
log_prob_threshold: float
|
243 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
244 |
+
below this value, treat as failed.
|
245 |
+
no_speech_threshold: float
|
246 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
247 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
248 |
+
consider the segment as silent.
|
249 |
progress: gr.Progress
|
250 |
Indicator to show progress directly in gradio.
|
251 |
|
|
|
266 |
audio=micaudio,
|
267 |
lang=lang,
|
268 |
istranslate=istranslate,
|
269 |
+
beam_size=beam_size,
|
270 |
+
log_prob_threshold=log_prob_threshold,
|
271 |
+
no_speech_threshold=no_speech_threshold,
|
272 |
progress=progress
|
273 |
)
|
274 |
progress(1, desc="Completed!")
|
|
|
290 |
audio: Union[str, BinaryIO, np.ndarray],
|
291 |
lang: str,
|
292 |
istranslate: bool,
|
293 |
+
beam_size: int,
|
294 |
+
log_prob_threshold: float,
|
295 |
+
no_speech_threshold: float,
|
296 |
progress: gr.Progress
|
297 |
) -> Tuple[list, float]:
|
298 |
"""
|
|
|
307 |
istranslate: bool
|
308 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
309 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
310 |
+
beam_size: int
|
311 |
+
Int value from gr.Number() that is used for decoding option.
|
312 |
+
log_prob_threshold: float
|
313 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
314 |
+
below this value, treat as failed.
|
315 |
+
no_speech_threshold: float
|
316 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
317 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
318 |
+
consider the segment as silent.
|
319 |
progress: gr.Progress
|
320 |
Indicator to show progress directly in gradio.
|
321 |
|
|
|
333 |
segments, info = self.model.transcribe(
|
334 |
audio=audio,
|
335 |
language=lang,
|
336 |
+
task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe",
|
337 |
+
beam_size=beam_size,
|
338 |
+
log_prob_threshold=log_prob_threshold,
|
339 |
+
no_speech_threshold=no_speech_threshold,
|
340 |
)
|
341 |
progress(0, desc="Loading audio..")
|
342 |
|
modules/whisper_Inference.py
CHANGED
@@ -30,6 +30,9 @@ class WhisperInference(BaseInterface):
|
|
30 |
subformat: str,
|
31 |
istranslate: bool,
|
32 |
add_timestamp: bool,
|
|
|
|
|
|
|
33 |
progress=gr.Progress()):
|
34 |
"""
|
35 |
Write subtitle file from Files
|
@@ -49,6 +52,15 @@ class WhisperInference(BaseInterface):
|
|
49 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
50 |
add_timestamp: bool
|
51 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
progress: gr.Progress
|
53 |
Indicator to show progress directly in gradio.
|
54 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
@@ -66,6 +78,9 @@ class WhisperInference(BaseInterface):
|
|
66 |
result, elapsed_time = self.transcribe(audio=audio,
|
67 |
lang=lang,
|
68 |
istranslate=istranslate,
|
|
|
|
|
|
|
69 |
progress=progress)
|
70 |
progress(1, desc="Completed!")
|
71 |
|
@@ -103,6 +118,9 @@ class WhisperInference(BaseInterface):
|
|
103 |
subformat: str,
|
104 |
istranslate: bool,
|
105 |
add_timestamp: bool,
|
|
|
|
|
|
|
106 |
progress=gr.Progress()):
|
107 |
"""
|
108 |
Write subtitle file from Youtube
|
@@ -122,6 +140,15 @@ class WhisperInference(BaseInterface):
|
|
122 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
123 |
add_timestamp: bool
|
124 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
progress: gr.Progress
|
126 |
Indicator to show progress directly in gradio.
|
127 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
@@ -137,6 +164,9 @@ class WhisperInference(BaseInterface):
|
|
137 |
result, elapsed_time = self.transcribe(audio=audio,
|
138 |
lang=lang,
|
139 |
istranslate=istranslate,
|
|
|
|
|
|
|
140 |
progress=progress)
|
141 |
progress(1, desc="Completed!")
|
142 |
|
@@ -153,10 +183,17 @@ class WhisperInference(BaseInterface):
|
|
153 |
print(f"Error transcribing youtube video: {str(e)}")
|
154 |
return f"Error transcribing youtube video: {str(e)}"
|
155 |
finally:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
def transcribe_mic(self,
|
162 |
micaudio: str,
|
@@ -164,6 +201,9 @@ class WhisperInference(BaseInterface):
|
|
164 |
lang: str,
|
165 |
subformat: str,
|
166 |
istranslate: bool,
|
|
|
|
|
|
|
167 |
progress=gr.Progress()):
|
168 |
"""
|
169 |
Write subtitle file from microphone
|
@@ -181,6 +221,15 @@ class WhisperInference(BaseInterface):
|
|
181 |
istranslate: bool
|
182 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
183 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
progress: gr.Progress
|
185 |
Indicator to show progress directly in gradio.
|
186 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
@@ -193,6 +242,9 @@ class WhisperInference(BaseInterface):
|
|
193 |
result, elapsed_time = self.transcribe(audio=micaudio,
|
194 |
lang=lang,
|
195 |
istranslate=istranslate,
|
|
|
|
|
|
|
196 |
progress=progress)
|
197 |
progress(1, desc="Completed!")
|
198 |
|
@@ -215,6 +267,9 @@ class WhisperInference(BaseInterface):
|
|
215 |
audio: Union[str, np.ndarray, torch.Tensor],
|
216 |
lang: str,
|
217 |
istranslate: bool,
|
|
|
|
|
|
|
218 |
progress: gr.Progress
|
219 |
) -> Tuple[list[dict], float]:
|
220 |
"""
|
@@ -229,6 +284,15 @@ class WhisperInference(BaseInterface):
|
|
229 |
istranslate: bool
|
230 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
231 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
progress: gr.Progress
|
233 |
Indicator to show progress directly in gradio.
|
234 |
|
@@ -251,7 +315,9 @@ class WhisperInference(BaseInterface):
|
|
251 |
segments_result = self.model.transcribe(audio=audio,
|
252 |
language=lang,
|
253 |
verbose=False,
|
254 |
-
beam_size=
|
|
|
|
|
255 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
256 |
progress_callback=progress_callback)["segments"]
|
257 |
elapsed_time = time.time() - start_time
|
|
|
30 |
subformat: str,
|
31 |
istranslate: bool,
|
32 |
add_timestamp: bool,
|
33 |
+
beam_size: int,
|
34 |
+
log_prob_threshold: float,
|
35 |
+
no_speech_threshold: float,
|
36 |
progress=gr.Progress()):
|
37 |
"""
|
38 |
Write subtitle file from Files
|
|
|
52 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
53 |
add_timestamp: bool
|
54 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
55 |
+
beam_size: int
|
56 |
+
Int value from gr.Number() that is used for decoding option.
|
57 |
+
log_prob_threshold: float
|
58 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
59 |
+
below this value, treat as failed.
|
60 |
+
no_speech_threshold: float
|
61 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
62 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
63 |
+
consider the segment as silent.
|
64 |
progress: gr.Progress
|
65 |
Indicator to show progress directly in gradio.
|
66 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
78 |
result, elapsed_time = self.transcribe(audio=audio,
|
79 |
lang=lang,
|
80 |
istranslate=istranslate,
|
81 |
+
beam_size=beam_size,
|
82 |
+
log_prob_threshold=log_prob_threshold,
|
83 |
+
no_speech_threshold=no_speech_threshold,
|
84 |
progress=progress)
|
85 |
progress(1, desc="Completed!")
|
86 |
|
|
|
118 |
subformat: str,
|
119 |
istranslate: bool,
|
120 |
add_timestamp: bool,
|
121 |
+
beam_size: int,
|
122 |
+
log_prob_threshold: float,
|
123 |
+
no_speech_threshold: float,
|
124 |
progress=gr.Progress()):
|
125 |
"""
|
126 |
Write subtitle file from Youtube
|
|
|
140 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
141 |
add_timestamp: bool
|
142 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
143 |
+
beam_size: int
|
144 |
+
Int value from gr.Number() that is used for decoding option.
|
145 |
+
log_prob_threshold: float
|
146 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
147 |
+
below this value, treat as failed.
|
148 |
+
no_speech_threshold: float
|
149 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
150 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
151 |
+
consider the segment as silent.
|
152 |
progress: gr.Progress
|
153 |
Indicator to show progress directly in gradio.
|
154 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
164 |
result, elapsed_time = self.transcribe(audio=audio,
|
165 |
lang=lang,
|
166 |
istranslate=istranslate,
|
167 |
+
beam_size=beam_size,
|
168 |
+
log_prob_threshold=log_prob_threshold,
|
169 |
+
no_speech_threshold=no_speech_threshold,
|
170 |
progress=progress)
|
171 |
progress(1, desc="Completed!")
|
172 |
|
|
|
183 |
print(f"Error transcribing youtube video: {str(e)}")
|
184 |
return f"Error transcribing youtube video: {str(e)}"
|
185 |
finally:
|
186 |
+
try:
|
187 |
+
if 'yt' not in locals():
|
188 |
+
yt = get_ytdata(youtubelink)
|
189 |
+
file_path = get_ytaudio(yt)
|
190 |
+
else:
|
191 |
+
file_path = get_ytaudio(yt)
|
192 |
+
|
193 |
+
self.release_cuda_memory()
|
194 |
+
self.remove_input_files([file_path])
|
195 |
+
except Exception as cleanup_error:
|
196 |
+
pass
|
197 |
|
198 |
def transcribe_mic(self,
|
199 |
micaudio: str,
|
|
|
201 |
lang: str,
|
202 |
subformat: str,
|
203 |
istranslate: bool,
|
204 |
+
beam_size: int,
|
205 |
+
log_prob_threshold: float,
|
206 |
+
no_speech_threshold: float,
|
207 |
progress=gr.Progress()):
|
208 |
"""
|
209 |
Write subtitle file from microphone
|
|
|
221 |
istranslate: bool
|
222 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
223 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
224 |
+
beam_size: int
|
225 |
+
Int value from gr.Number() that is used for decoding option.
|
226 |
+
log_prob_threshold: float
|
227 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
228 |
+
below this value, treat as failed.
|
229 |
+
no_speech_threshold: float
|
230 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
231 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
232 |
+
consider the segment as silent.
|
233 |
progress: gr.Progress
|
234 |
Indicator to show progress directly in gradio.
|
235 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
242 |
result, elapsed_time = self.transcribe(audio=micaudio,
|
243 |
lang=lang,
|
244 |
istranslate=istranslate,
|
245 |
+
beam_size=beam_size,
|
246 |
+
log_prob_threshold=log_prob_threshold,
|
247 |
+
no_speech_threshold=no_speech_threshold,
|
248 |
progress=progress)
|
249 |
progress(1, desc="Completed!")
|
250 |
|
|
|
267 |
audio: Union[str, np.ndarray, torch.Tensor],
|
268 |
lang: str,
|
269 |
istranslate: bool,
|
270 |
+
beam_size: int,
|
271 |
+
log_prob_threshold: float,
|
272 |
+
no_speech_threshold: float,
|
273 |
progress: gr.Progress
|
274 |
) -> Tuple[list[dict], float]:
|
275 |
"""
|
|
|
284 |
istranslate: bool
|
285 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
286 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
287 |
+
beam_size: int
|
288 |
+
Int value from gr.Number() that is used for decoding option.
|
289 |
+
log_prob_threshold: float
|
290 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
291 |
+
below this value, treat as failed.
|
292 |
+
no_speech_threshold: float
|
293 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
294 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
295 |
+
consider the segment as silent.
|
296 |
progress: gr.Progress
|
297 |
Indicator to show progress directly in gradio.
|
298 |
|
|
|
315 |
segments_result = self.model.transcribe(audio=audio,
|
316 |
language=lang,
|
317 |
verbose=False,
|
318 |
+
beam_size=beam_size,
|
319 |
+
logprob_threshold=log_prob_threshold,
|
320 |
+
no_speech_threshold=no_speech_threshold,
|
321 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
322 |
progress_callback=progress_callback)["segments"]
|
323 |
elapsed_time = time.time() - start_time
|