|
import pandas as pd
|
|
import numpy as np
|
|
from skimage import color
|
|
from PIL import Image
|
|
|
|
|
|
def skimage_rgb2lab(rgb):
|
|
return color.rgb2lab(rgb.reshape(1,1,3))
|
|
|
|
|
|
def rgb2df(img):
|
|
h, w, _ = img.shape
|
|
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
|
r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
|
|
df = pd.DataFrame({
|
|
"x_l": x_l.ravel(),
|
|
"y_l": y_l.ravel(),
|
|
"r": r.ravel(),
|
|
"g": g.ravel(),
|
|
"b": b.ravel(),
|
|
})
|
|
return df
|
|
|
|
def mask2df(mask):
|
|
h, w = mask.shape
|
|
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
|
flg = mask.astype(int)
|
|
df = pd.DataFrame({
|
|
"x_l_m": x_l.ravel(),
|
|
"y_l_m": y_l.ravel(),
|
|
"m_flg": flg.ravel(),
|
|
})
|
|
return df
|
|
|
|
|
|
def rgba2df(img):
|
|
h, w, _ = img.shape
|
|
x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
|
r, g, b, a = img[:,:,0], img[:,:,1], img[:,:,2], img[:,:,3]
|
|
df = pd.DataFrame({
|
|
"x_l": x_l.ravel(),
|
|
"y_l": y_l.ravel(),
|
|
"r": r.ravel(),
|
|
"g": g.ravel(),
|
|
"b": b.ravel(),
|
|
"a": a.ravel()
|
|
})
|
|
return df
|
|
|
|
def hsv2df(img):
|
|
x_l, y_l = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing='ij')
|
|
h, s, v = np.transpose(img, (2, 0, 1))
|
|
df = pd.DataFrame({'x_l': x_l.flatten(), 'y_l': y_l.flatten(), 'h': h.flatten(), 's': s.flatten(), 'v': v.flatten()})
|
|
return df
|
|
|
|
def df2rgba(img_df):
|
|
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
|
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
|
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
|
a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
|
|
df_img = np.stack([r_img, g_img, b_img, a_img], 2).astype(np.uint8)
|
|
return df_img
|
|
|
|
def df2bgra(img_df):
|
|
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
|
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
|
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
|
a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
|
|
df_img = np.stack([b_img, g_img, r_img, a_img], 2).astype(np.uint8)
|
|
return df_img
|
|
|
|
def df2rgb(img_df):
|
|
r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
|
|
g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
|
|
b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
|
|
df_img = np.stack([r_img, g_img, b_img], 2).astype(np.uint8)
|
|
return df_img
|
|
|
|
def pil2cv(image):
|
|
new_image = np.array(image, dtype=np.uint8)
|
|
if new_image.ndim == 2:
|
|
pass
|
|
elif new_image.shape[2] == 3:
|
|
new_image = new_image[:, :, ::-1]
|
|
elif new_image.shape[2] == 4:
|
|
new_image = new_image[:, :, [2, 1, 0, 3]]
|
|
return new_image
|
|
|
|
def cv2pil(image):
|
|
new_image = image.copy()
|
|
if new_image.ndim == 2:
|
|
pass
|
|
elif new_image.shape[2] == 3:
|
|
new_image = new_image[:, :, ::-1]
|
|
elif new_image.shape[2] == 4:
|
|
new_image = new_image[:, :, [2, 1, 0, 3]]
|
|
new_image = Image.fromarray(new_image)
|
|
return new_image
|
|
|
|
|
|
|
|
|
|
|