|
import torch |
|
import torch.nn as nn |
|
|
|
from .vit import ( |
|
_make_pretrained_vitb_rn50_384, |
|
_make_pretrained_vitl16_384, |
|
_make_pretrained_vitb16_384, |
|
forward_vit, |
|
) |
|
|
|
|
|
def _make_encoder( |
|
backbone, |
|
features, |
|
use_pretrained, |
|
groups=1, |
|
expand=False, |
|
exportable=True, |
|
hooks=None, |
|
use_vit_only=False, |
|
use_readout="ignore", |
|
enable_attention_hooks=False, |
|
): |
|
if backbone == "vitl16_384": |
|
pretrained = _make_pretrained_vitl16_384( |
|
use_pretrained, |
|
hooks=hooks, |
|
use_readout=use_readout, |
|
enable_attention_hooks=enable_attention_hooks, |
|
) |
|
scratch = _make_scratch( |
|
[256, 512, 1024, 1024], features, groups=groups, expand=expand |
|
) |
|
elif backbone == "vitb_rn50_384": |
|
pretrained = _make_pretrained_vitb_rn50_384( |
|
use_pretrained, |
|
hooks=hooks, |
|
use_vit_only=use_vit_only, |
|
use_readout=use_readout, |
|
enable_attention_hooks=enable_attention_hooks, |
|
) |
|
scratch = _make_scratch( |
|
[256, 512, 768, 768], features, groups=groups, expand=expand |
|
) |
|
elif backbone == "vitb16_384": |
|
pretrained = _make_pretrained_vitb16_384( |
|
use_pretrained, |
|
hooks=hooks, |
|
use_readout=use_readout, |
|
enable_attention_hooks=enable_attention_hooks, |
|
) |
|
scratch = _make_scratch( |
|
[96, 192, 384, 768], features, groups=groups, expand=expand |
|
) |
|
elif backbone == "resnext101_wsl": |
|
pretrained = _make_pretrained_resnext101_wsl(use_pretrained) |
|
scratch = _make_scratch( |
|
[256, 512, 1024, 2048], features, groups=groups, expand=expand |
|
) |
|
else: |
|
print(f"Backbone '{backbone}' not implemented") |
|
assert False |
|
|
|
return pretrained, scratch |
|
|
|
|
|
def _make_scratch(in_shape, out_shape, groups=1, expand=False): |
|
scratch = nn.Module() |
|
|
|
out_shape1 = out_shape |
|
out_shape2 = out_shape |
|
out_shape3 = out_shape |
|
out_shape4 = out_shape |
|
if expand == True: |
|
out_shape1 = out_shape |
|
out_shape2 = out_shape * 2 |
|
out_shape3 = out_shape * 4 |
|
out_shape4 = out_shape * 8 |
|
|
|
scratch.layer1_rn = nn.Conv2d( |
|
in_shape[0], |
|
out_shape1, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer2_rn = nn.Conv2d( |
|
in_shape[1], |
|
out_shape2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer3_rn = nn.Conv2d( |
|
in_shape[2], |
|
out_shape3, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
scratch.layer4_rn = nn.Conv2d( |
|
in_shape[3], |
|
out_shape4, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
groups=groups, |
|
) |
|
|
|
return scratch |
|
|
|
|
|
def _make_resnet_backbone(resnet): |
|
pretrained = nn.Module() |
|
pretrained.layer1 = nn.Sequential( |
|
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 |
|
) |
|
|
|
pretrained.layer2 = resnet.layer2 |
|
pretrained.layer3 = resnet.layer3 |
|
pretrained.layer4 = resnet.layer4 |
|
|
|
return pretrained |
|
|
|
|
|
def _make_pretrained_resnext101_wsl(use_pretrained): |
|
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") |
|
return _make_resnet_backbone(resnet) |
|
|
|
|
|
class Interpolate(nn.Module): |
|
"""Interpolation module.""" |
|
|
|
def __init__(self, scale_factor, mode, align_corners=False): |
|
"""Init. |
|
|
|
Args: |
|
scale_factor (float): scaling |
|
mode (str): interpolation mode |
|
""" |
|
super(Interpolate, self).__init__() |
|
|
|
self.interp = nn.functional.interpolate |
|
self.scale_factor = scale_factor |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: interpolated data |
|
""" |
|
|
|
x = self.interp( |
|
x, |
|
scale_factor=self.scale_factor, |
|
mode=self.mode, |
|
align_corners=self.align_corners, |
|
) |
|
|
|
return x |
|
|
|
|
|
class ResidualConvUnit(nn.Module): |
|
"""Residual convolution module.""" |
|
|
|
def __init__(self, features): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.conv1 = nn.Conv2d( |
|
features, features, kernel_size=3, stride=1, padding=1, bias=True |
|
) |
|
|
|
self.conv2 = nn.Conv2d( |
|
features, features, kernel_size=3, stride=1, padding=1, bias=True |
|
) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
out = self.relu(x) |
|
out = self.conv1(out) |
|
out = self.relu(out) |
|
out = self.conv2(out) |
|
|
|
return out + x |
|
|
|
|
|
class FeatureFusionBlock(nn.Module): |
|
"""Feature fusion block.""" |
|
|
|
def __init__(self, features): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super(FeatureFusionBlock, self).__init__() |
|
|
|
self.resConfUnit1 = ResidualConvUnit(features) |
|
self.resConfUnit2 = ResidualConvUnit(features) |
|
|
|
def forward(self, *xs): |
|
"""Forward pass. |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
output = xs[0] |
|
|
|
if len(xs) == 2: |
|
output += self.resConfUnit1(xs[1]) |
|
|
|
output = self.resConfUnit2(output) |
|
|
|
output = nn.functional.interpolate( |
|
output, scale_factor=2, mode="bilinear", align_corners=True |
|
) |
|
|
|
return output |
|
|
|
|
|
class ResidualConvUnit_custom(nn.Module): |
|
"""Residual convolution module.""" |
|
|
|
def __init__(self, features, activation, bn): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.bn = bn |
|
|
|
self.groups = 1 |
|
|
|
self.conv1 = nn.Conv2d( |
|
features, |
|
features, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=not self.bn, |
|
groups=self.groups, |
|
) |
|
|
|
self.conv2 = nn.Conv2d( |
|
features, |
|
features, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=not self.bn, |
|
groups=self.groups, |
|
) |
|
|
|
if self.bn == True: |
|
self.bn1 = nn.BatchNorm2d(features) |
|
self.bn2 = nn.BatchNorm2d(features) |
|
|
|
self.activation = activation |
|
|
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
|
|
out = self.activation(x) |
|
out = self.conv1(out) |
|
if self.bn == True: |
|
out = self.bn1(out) |
|
|
|
out = self.activation(out) |
|
out = self.conv2(out) |
|
if self.bn == True: |
|
out = self.bn2(out) |
|
|
|
if self.groups > 1: |
|
out = self.conv_merge(out) |
|
|
|
return self.skip_add.add(out, x) |
|
|
|
|
|
|
|
|
|
class FeatureFusionBlock_custom(nn.Module): |
|
"""Feature fusion block.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
activation, |
|
deconv=False, |
|
bn=False, |
|
expand=False, |
|
align_corners=True, |
|
): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super(FeatureFusionBlock_custom, self).__init__() |
|
|
|
self.deconv = deconv |
|
self.align_corners = align_corners |
|
|
|
self.groups = 1 |
|
|
|
self.expand = expand |
|
out_features = features |
|
if self.expand == True: |
|
out_features = features // 2 |
|
|
|
self.out_conv = nn.Conv2d( |
|
features, |
|
out_features, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True, |
|
groups=1, |
|
) |
|
|
|
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) |
|
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) |
|
|
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, *xs): |
|
"""Forward pass. |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
output = xs[0] |
|
|
|
if len(xs) == 2: |
|
res = self.resConfUnit1(xs[1]) |
|
output = self.skip_add.add(output, res) |
|
|
|
|
|
output = self.resConfUnit2(output) |
|
|
|
output = nn.functional.interpolate( |
|
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners |
|
) |
|
|
|
output = self.out_conv(output) |
|
|
|
return output |
|
|