|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .base_model import BaseModel |
|
from .blocks import ( |
|
FeatureFusionBlock, |
|
FeatureFusionBlock_custom, |
|
Interpolate, |
|
_make_encoder, |
|
forward_vit, |
|
) |
|
|
|
|
|
def _make_fusion_block(features, use_bn): |
|
return FeatureFusionBlock_custom( |
|
features, |
|
nn.ReLU(False), |
|
deconv=False, |
|
bn=use_bn, |
|
expand=False, |
|
align_corners=True, |
|
) |
|
|
|
|
|
class DPT(BaseModel): |
|
def __init__( |
|
self, |
|
head, |
|
features=256, |
|
backbone="vitb_rn50_384", |
|
readout="project", |
|
channels_last=False, |
|
use_bn=False, |
|
enable_attention_hooks=False, |
|
): |
|
|
|
super(DPT, self).__init__() |
|
|
|
self.channels_last = channels_last |
|
|
|
hooks = { |
|
"vitb_rn50_384": [0, 1, 8, 11], |
|
"vitb16_384": [2, 5, 8, 11], |
|
"vitl16_384": [5, 11, 17, 23], |
|
} |
|
|
|
|
|
self.pretrained, self.scratch = _make_encoder( |
|
backbone, |
|
features, |
|
False, |
|
groups=1, |
|
expand=False, |
|
exportable=False, |
|
hooks=hooks[backbone], |
|
use_readout=readout, |
|
enable_attention_hooks=enable_attention_hooks, |
|
) |
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) |
|
|
|
self.scratch.output_conv = head |
|
|
|
def forward(self, x): |
|
if self.channels_last == True: |
|
x.contiguous(memory_format=torch.channels_last) |
|
|
|
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) |
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1) |
|
layer_2_rn = self.scratch.layer2_rn(layer_2) |
|
layer_3_rn = self.scratch.layer3_rn(layer_3) |
|
layer_4_rn = self.scratch.layer4_rn(layer_4) |
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn) |
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn) |
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn) |
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) |
|
|
|
out = self.scratch.output_conv(path_1) |
|
|
|
return out |
|
|
|
|
|
class DPTDepthModel(DPT): |
|
def __init__( |
|
self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs |
|
): |
|
features = kwargs["features"] if "features" in kwargs else 256 |
|
|
|
self.scale = scale |
|
self.shift = shift |
|
self.invert = invert |
|
|
|
head = nn.Sequential( |
|
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), |
|
Interpolate(scale_factor=2, mode="bilinear", align_corners=True), |
|
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), |
|
nn.ReLU(True) if non_negative else nn.Identity(), |
|
nn.Identity(), |
|
) |
|
|
|
super().__init__(head, **kwargs) |
|
|
|
if path is not None: |
|
self.load(path) |
|
|
|
def forward(self, x): |
|
inv_depth = super().forward(x).squeeze(dim=1) |
|
|
|
if self.invert: |
|
depth = self.scale * inv_depth + self.shift |
|
depth[depth < 1e-8] = 1e-8 |
|
depth = 1.0 / depth |
|
return depth |
|
else: |
|
return inv_depth |
|
|
|
|
|
class DPTSegmentationModel(DPT): |
|
def __init__(self, num_classes, path=None, **kwargs): |
|
|
|
features = kwargs["features"] if "features" in kwargs else 256 |
|
|
|
kwargs["use_bn"] = True |
|
|
|
head = nn.Sequential( |
|
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(features), |
|
nn.ReLU(True), |
|
nn.Dropout(0.1, False), |
|
nn.Conv2d(features, num_classes, kernel_size=1), |
|
Interpolate(scale_factor=2, mode="bilinear", align_corners=True), |
|
) |
|
|
|
super().__init__(head, **kwargs) |
|
|
|
self.auxlayer = nn.Sequential( |
|
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(features), |
|
nn.ReLU(True), |
|
nn.Dropout(0.1, False), |
|
nn.Conv2d(features, num_classes, kernel_size=1), |
|
) |
|
|
|
if path is not None: |
|
self.load(path) |
|
|