from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM import gradio as gr import torch DEVICE = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3", trust_remote_code=True) model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", trust_remote_code=True).to(DEVICE) model = model.eval() def predict(input, history=None): if history is None: history = [] new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history with gr.Blocks() as demo: gr.Markdown('''## Confidential HuggingFace Runner ''') state = gr.State([]) chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400) with gr.Row(): with gr.Column(scale=4): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) with gr.Column(scale=1): button = gr.Button("Generate") txt.submit(predict, [txt, state], [chatbot, state]) button.click(predict, [txt, state], [chatbot, state]) demo.queue().launch(share=True, server_name="0.0.0.0")