Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoModelForTableQuestionAnswering, | |
AutoTokenizer, | |
pipeline, | |
TapexTokenizer, | |
BartForConditionalGeneration | |
) | |
import pandas as pd | |
import json | |
# model_tapex = "microsoft/tapex-large-finetuned-wtq" | |
# tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex) | |
# model_tapex = AutoModelForSeq2SeqLM.from_pretrained(model_tapex) | |
# pipe_tapex = pipeline( | |
# "table-question-answering", model=model_tapex, tokenizer=tokenizer_tapex | |
# ) | |
#new | |
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
# model_tapas = "google/tapas-large-finetuned-wtq" | |
# tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas) | |
# model_tapas = AutoModelForTableQuestionAnswering.from_pretrained(model_tapas) | |
# pipe_tapas = pipeline( | |
# "table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas | |
# ) | |
#new | |
pipe_tapas = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq") | |
pipe_tapas2 = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wikisql-supervised") | |
def process2(query, csv_dataStr): | |
# csv_data={"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} | |
csv_data = json.loads(csv_dataStr) | |
table = pd.DataFrame.from_dict(csv_data) | |
#microsoft | |
encoding = tokenizer(table=table, query=query, return_tensors="pt") | |
outputs = model.generate(**encoding) | |
result_tapex=tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
result_tapas = pipe_tapas(table=table, query=query)['cells'][0] | |
#google2 | |
result_tapas2 = pipe_tapas2(table=table, query=query)['cells'][0] | |
return result_tapex, result_tapas, result_tapas2 | |
# Inputs | |
query_text = gr.Text(label="") | |
# input_file = gr.File(label="Upload a CSV file", type="file") | |
input_data = gr.Text(label="") | |
# rows_slider = gr.Slider(label="Number of rows") | |
# Output | |
answer_text_tapex = gr.Text(label="") | |
answer_text_tapas = gr.Text(label="") | |
answer_text_tapas2 = gr.Text(label="") | |
description = "This Space lets you ask questions on CSV documents with Microsoft [TAPEX-Large](https://huggingface.co/microsoft/tapex-large-finetuned-wtq) and Google [TAPAS-Large](https://huggingface.co/google/tapas-large-finetuned-wtq). \ | |
Both have been fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. \n\n\ | |
A sample file with football statistics is available in the repository: \n\n\ | |
* Which team has the most wins? Answer: Manchester City FC\n\ | |
* Which team has the most wins: Chelsea, Liverpool or Everton? Answer: Liverpool\n\ | |
* Which teams have scored less than 40 goals? Answer: Cardiff City FC, Fulham FC, Brighton & Hove Albion FC, Huddersfield Town FC\n\ | |
* What is the average number of wins? Answer: 16 (rounded)\n\n\ | |
You can also upload your own CSV file. Please note that maximum sequence length for both models is 1024 tokens, \ | |
so you may need to limit the number of rows in your CSV file. Chunking is not implemented yet." | |
iface = gr.Interface( | |
theme="huggingface", | |
description=description, | |
layout="vertical", | |
fn=process2, | |
inputs=[query_text, input_data], | |
outputs=[answer_text_tapex, answer_text_tapas, answer_text_tapas2], | |
examples=[ | |
], | |
allow_flagging="never", | |
) | |
iface.launch() |