|
import os |
|
|
|
import torch |
|
import socket |
|
|
|
try: |
|
import horovod.torch as hvd |
|
except ImportError: |
|
hvd = None |
|
|
|
|
|
def is_global_master(args): |
|
return args.rank == 0 |
|
|
|
|
|
def is_local_master(args): |
|
return args.local_rank == 0 |
|
|
|
|
|
def is_master(args, local=False): |
|
return is_local_master(args) if local else is_global_master(args) |
|
|
|
|
|
def is_using_horovod(): |
|
|
|
|
|
ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"] |
|
pmi_vars = ["PMI_RANK", "PMI_SIZE"] |
|
if all([var in os.environ for var in ompi_vars]) or all( |
|
[var in os.environ for var in pmi_vars] |
|
): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def is_using_distributed(): |
|
if "WORLD_SIZE" in os.environ: |
|
return int(os.environ["WORLD_SIZE"]) > 1 |
|
if "SLURM_NTASKS" in os.environ: |
|
return int(os.environ["SLURM_NTASKS"]) > 1 |
|
return False |
|
|
|
|
|
def world_info_from_env(): |
|
local_rank = 0 |
|
for v in ( |
|
"SLURM_LOCALID", |
|
"MPI_LOCALRANKID", |
|
"OMPI_COMM_WORLD_LOCAL_RANK", |
|
"LOCAL_RANK", |
|
): |
|
if v in os.environ: |
|
local_rank = int(os.environ[v]) |
|
break |
|
global_rank = 0 |
|
for v in ("SLURM_PROCID", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "RANK"): |
|
if v in os.environ: |
|
global_rank = int(os.environ[v]) |
|
break |
|
world_size = 1 |
|
for v in ("SLURM_NTASKS", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "WORLD_SIZE"): |
|
if v in os.environ: |
|
world_size = int(os.environ[v]) |
|
break |
|
|
|
return local_rank, global_rank, world_size |
|
|
|
|
|
def init_distributed_device(args): |
|
|
|
|
|
args.distributed = False |
|
args.world_size = 1 |
|
args.rank = 0 |
|
args.local_rank = 0 |
|
if args.horovod: |
|
assert hvd is not None, "Horovod is not installed" |
|
hvd.init() |
|
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) |
|
world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) |
|
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) |
|
args.local_rank = local_rank |
|
args.rank = world_rank |
|
args.world_size = world_size |
|
|
|
|
|
|
|
args.distributed = True |
|
os.environ["LOCAL_RANK"] = str(args.local_rank) |
|
os.environ["RANK"] = str(args.rank) |
|
os.environ["WORLD_SIZE"] = str(args.world_size) |
|
print( |
|
f"Distributed training: local_rank={args.local_rank}, " |
|
f"rank={args.rank}, world_size={args.world_size}, " |
|
f"hostname={socket.gethostname()}, pid={os.getpid()}" |
|
) |
|
elif is_using_distributed(): |
|
if "SLURM_PROCID" in os.environ: |
|
|
|
args.local_rank, args.rank, args.world_size = world_info_from_env() |
|
|
|
os.environ["LOCAL_RANK"] = str(args.local_rank) |
|
os.environ["RANK"] = str(args.rank) |
|
os.environ["WORLD_SIZE"] = str(args.world_size) |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, |
|
init_method=args.dist_url, |
|
world_size=args.world_size, |
|
rank=args.rank, |
|
) |
|
elif "OMPI_COMM_WORLD_SIZE" in os.environ: |
|
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) |
|
world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) |
|
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) |
|
args.local_rank = local_rank |
|
args.rank = world_rank |
|
args.world_size = world_size |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, |
|
init_method=args.dist_url, |
|
world_size=args.world_size, |
|
rank=args.rank, |
|
) |
|
else: |
|
|
|
args.local_rank, _, _ = world_info_from_env() |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, init_method=args.dist_url |
|
) |
|
args.world_size = torch.distributed.get_world_size() |
|
args.rank = torch.distributed.get_rank() |
|
args.distributed = True |
|
print( |
|
f"Distributed training: local_rank={args.local_rank}, " |
|
f"rank={args.rank}, world_size={args.world_size}, " |
|
f"hostname={socket.gethostname()}, pid={os.getpid()}" |
|
) |
|
|
|
if torch.cuda.is_available(): |
|
if args.distributed and not args.no_set_device_rank: |
|
device = "cuda:%d" % args.local_rank |
|
else: |
|
device = "cuda:0" |
|
torch.cuda.set_device(device) |
|
else: |
|
device = "cpu" |
|
args.device = device |
|
device = torch.device(device) |
|
return device |
|
|