|
"""SAMPLING ONLY.""" |
|
|
|
import torch |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from audioldm.latent_diffusion.util import ( |
|
make_ddim_sampling_parameters, |
|
make_ddim_timesteps, |
|
noise_like, |
|
extract_into_tensor, |
|
) |
|
import gradio as gr |
|
|
|
class DDIMSampler(object): |
|
def __init__(self, model, schedule="linear", **kwargs): |
|
super().__init__() |
|
self.model = model |
|
self.ddpm_num_timesteps = model.num_timesteps |
|
self.schedule = schedule |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device("cuda"): |
|
attr = attr.to(torch.device("cuda")) |
|
setattr(self, name, attr) |
|
|
|
def make_schedule( |
|
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True |
|
): |
|
self.ddim_timesteps = make_ddim_timesteps( |
|
ddim_discr_method=ddim_discretize, |
|
num_ddim_timesteps=ddim_num_steps, |
|
num_ddpm_timesteps=self.ddpm_num_timesteps, |
|
verbose=verbose, |
|
) |
|
alphas_cumprod = self.model.alphas_cumprod |
|
assert ( |
|
alphas_cumprod.shape[0] == self.ddpm_num_timesteps |
|
), "alphas have to be defined for each timestep" |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) |
|
|
|
self.register_buffer("betas", to_torch(self.model.betas)) |
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) |
|
self.register_buffer( |
|
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) |
|
) |
|
|
|
|
|
self.register_buffer( |
|
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_one_minus_alphas_cumprod", |
|
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), |
|
) |
|
self.register_buffer( |
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) |
|
) |
|
self.register_buffer( |
|
"sqrt_recipm1_alphas_cumprod", |
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), |
|
) |
|
|
|
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( |
|
alphacums=alphas_cumprod.cpu(), |
|
ddim_timesteps=self.ddim_timesteps, |
|
eta=ddim_eta, |
|
verbose=verbose, |
|
) |
|
self.register_buffer("ddim_sigmas", ddim_sigmas) |
|
self.register_buffer("ddim_alphas", ddim_alphas) |
|
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) |
|
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) |
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( |
|
(1 - self.alphas_cumprod_prev) |
|
/ (1 - self.alphas_cumprod) |
|
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev) |
|
) |
|
self.register_buffer( |
|
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps |
|
) |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0.0, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
|
|
**kwargs, |
|
): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0] |
|
if cbs != batch_size: |
|
print( |
|
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" |
|
) |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print( |
|
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" |
|
) |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
samples, intermediates = self.ddim_sampling( |
|
conditioning, |
|
size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, |
|
x0=x0, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
) |
|
return samples, intermediates |
|
|
|
@torch.no_grad() |
|
def ddim_sampling( |
|
self, |
|
cond, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
): |
|
device = self.model.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
if timesteps is None: |
|
timesteps = ( |
|
self.ddpm_num_timesteps |
|
if ddim_use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = ( |
|
int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) |
|
* self.ddim_timesteps.shape[0] |
|
) |
|
- 1 |
|
) |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {"x_inter": [img], "pred_x0": [img]} |
|
time_range = ( |
|
reversed(range(0, timesteps)) |
|
if ddim_use_original_steps |
|
else np.flip(timesteps) |
|
) |
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] |
|
|
|
|
|
|
|
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((b,), step, device=device, dtype=torch.long) |
|
if mask is not None: |
|
assert x0 is not None |
|
img_orig = self.model.q_sample( |
|
x0, ts |
|
) |
|
img = ( |
|
img_orig * mask + (1.0 - mask) * img |
|
) |
|
|
|
outs = self.p_sample_ddim( |
|
img, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
) |
|
img, pred_x0 = outs |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(pred_x0, i) |
|
|
|
if index % log_every_t == 0 or index == total_steps - 1: |
|
intermediates["x_inter"].append(img) |
|
intermediates["pred_x0"].append(pred_x0) |
|
|
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): |
|
|
|
|
|
if use_original_steps: |
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod |
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod |
|
else: |
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) |
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas |
|
|
|
if noise is None: |
|
noise = torch.randn_like(x0) |
|
|
|
return ( |
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 |
|
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise |
|
) |
|
|
|
@torch.no_grad() |
|
def decode( |
|
self, |
|
x_latent, |
|
cond, |
|
t_start, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
use_original_steps=False, |
|
): |
|
|
|
timesteps = ( |
|
np.arange(self.ddpm_num_timesteps) |
|
if use_original_steps |
|
else self.ddim_timesteps |
|
) |
|
timesteps = timesteps[:t_start] |
|
|
|
time_range = np.flip(timesteps) |
|
total_steps = timesteps.shape[0] |
|
|
|
|
|
|
|
iterator = tqdm(time_range, desc="Decoding image", total=total_steps) |
|
x_dec = x_latent |
|
|
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full( |
|
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long |
|
) |
|
x_dec, _ = self.p_sample_ddim( |
|
x_dec, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=use_original_steps, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
) |
|
return x_dec |
|
|
|
@torch.no_grad() |
|
def p_sample_ddim( |
|
self, |
|
x, |
|
c, |
|
t, |
|
index, |
|
repeat_noise=False, |
|
use_original_steps=False, |
|
quantize_denoised=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
|
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: |
|
e_t = self.model.apply_model(x, t, c) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t] * 2) |
|
c_in = torch.cat([unconditional_conditioning, c]) |
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) |
|
|
|
|
|
|
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == "eps" |
|
e_t = score_corrector.modify_score( |
|
self.model, e_t, x, t, c, **corrector_kwargs |
|
) |
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas |
|
alphas_prev = ( |
|
self.model.alphas_cumprod_prev |
|
if use_original_steps |
|
else self.ddim_alphas_prev |
|
) |
|
sqrt_one_minus_alphas = ( |
|
self.model.sqrt_one_minus_alphas_cumprod |
|
if use_original_steps |
|
else self.ddim_sqrt_one_minus_alphas |
|
) |
|
sigmas = ( |
|
self.model.ddim_sigmas_for_original_num_steps |
|
if use_original_steps |
|
else self.ddim_sigmas |
|
) |
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full( |
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device |
|
) |
|
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t |
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.0: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
return x_prev, pred_x0 |
|
|