import gradio as gr import numpy as np from audioldm import text_to_audio, build_model from share_btn import community_icon_html, loading_icon_html, share_js model_id="haoheliu/AudioLDM-S-Full" audioldm = None current_model_name = None # def predict(input, history=[]): # # tokenize the new input sentence # new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # # append the new user input tokens to the chat history # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # # generate a response # history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # # convert the tokens to text, and then split the responses into lines # response = tokenizer.decode(history[0]).split("<|endoftext|>") # response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list # return response, history def text2audio(text, duration, guidance_scale, random_seed, n_candidates, model_name="audioldm-m-text-ft"): global audioldm, current_model_name if audioldm is None or model_name != current_model_name: audioldm=build_model(model_name=model_name) current_model_name = model_name # print(text, length, guidance_scale) waveform = text_to_audio( latent_diffusion=audioldm, text=text, seed=random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates), ) # [bs, 1, samples] waveform = [ gr.make_waveform((16000, wave[0]), bg_image="bg.png") for wave in waveform ] # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))] if(len(waveform) == 1): waveform = waveform[0] return waveform iface = gr.Interface(fn=text2audio, inputs=[ gr.Textbox(value="A man is speaking in a huge room", max_lines=1), gr.Slider(2.5, 10, value=5, step=2.5), gr.Slider(0, 5, value=2.5, step=0.5), gr.Number(value=42), gr.Number(value=3) ], outputs="waveform", allow_flagging="never" ) iface.launch(share=False) #iface.queue(max_size=10).launch(debug=True) # iface.launch(debug=True, share=True)