|
import json |
|
|
|
import gradio as gr |
|
import requests |
|
import uvicorn |
|
from fastapi import FastAPI |
|
from huggingface_hub import InferenceClient |
|
from starlette.responses import StreamingResponse, JSONResponse |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("microsoft/Phi-3-mini-4k-instruct") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
app = FastAPI() |
|
|
|
@app.head("/ask") |
|
def ask_head(): |
|
return StreamingResponse("", media_type="application/json") |
|
|
|
@app.get("/ask") |
|
def ask_get(message: str = "", system_message: str = "You are a friendly Chatbot.", max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95): |
|
predict_response = requests.post('http://localhost:7860/call/chat', json={'data': [message, [], system_message, max_tokens, temperature, top_p]}).json() |
|
if "event_id" not in predict_response: |
|
return predict_response |
|
out = requests.get(f'http://localhost:7860/call/chat/{predict_response["event_id"]}').text |
|
return JSONResponse([json.loads(out.rsplit("event: complete\ndata: ", 1)[-1])[0].strip()]) |
|
|
|
if __name__ == "__main__": |
|
app = gr.mount_gradio_app(app, demo, path="/") |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |