import json import gradio as gr import requests import uvicorn from fastapi import FastAPI from huggingface_hub import InferenceClient from starlette.responses import StreamingResponse, JSONResponse """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("microsoft/Phi-3-mini-4k-instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) app = FastAPI() @app.head("/ask") def ask_head(): return StreamingResponse("", media_type="application/json") @app.get("/ask") def ask_get(message: str = "", system_message: str = "You are a friendly Chatbot.", max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95): predict_response = requests.post('http://localhost:7860/call/chat', json={'data': [message, [], system_message, max_tokens, temperature, top_p]}).json() if "event_id" not in predict_response: return predict_response out = requests.get(f'http://localhost:7860/call/chat/{predict_response["event_id"]}').text return JSONResponse([json.loads(out.rsplit("event: complete\ndata: ", 1)[-1])[0].strip()]) if __name__ == "__main__": app = gr.mount_gradio_app(app, demo, path="/") uvicorn.run(app, host="0.0.0.0", port=7860)