import requests import zipfile import os import shutil from tqdm import tqdm def download(): url = 'https://huggingface.co/Ailyth/Text_to_Speech_MODELS/resolve/main/tts_models.zip?download=true' output = 'temp.zip' current_dir = os.path.dirname(os.path.abspath(__file__)) info_py_path = os.path.join(current_dir, 'info.py') models_dir = os.path.join(current_dir, 'MODELS') if os.path.exists(info_py_path) and os.path.exists(models_dir): print('Files already exist, skipping download.') return print('✨ Downloading models') response = requests.head(url) total_size = int(response.headers.get('content-length', 0)) block_size = 1024 progress = tqdm(total=total_size, unit='iB', unit_scale=True) with requests.get(url, stream=True) as r: with open(output, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): if chunk: f.write(chunk) progress.update(len(chunk)) progress.close() with zipfile.ZipFile(output, 'r') as zip_ref: total_files = len(zip_ref.infolist()) print('Installing') extract_progress = tqdm(total=total_files, unit='file', leave=False) for file_info in zip_ref.infolist(): try: zip_ref.extract(file_info, path=current_dir) except zipfile.error as e: print(f"Error extracting {file_info.filename}: {e}") extract_progress.update() extract_progress.close() os.remove(output) def download_nltk_data(): import nltk nltk.download('averaged_perceptron_tagger') nltk.download('cmudict') if __name__ == '__main__': download() download_nltk_data()