File size: 102,050 Bytes
122057f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union

import numpy as np
import torch

from ..utils import add_start_docstrings
from ..utils.logging import get_logger


logger = get_logger(__name__)


LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
        scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
            Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
            search or log softmax for each vocabulary token when using beam search

    Return:
        `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.

"""


class LogitsProcessor:
    """Abstract base class for all logit processors that can be applied during generation."""

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        raise NotImplementedError(
            f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
        )


class LogitsWarper:
    """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        raise NotImplementedError(
            f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
        )


class LogitsProcessorList(list):
    """
    This class can be used to create a list of [`LogitsProcessor`] or [`LogitsWarper`] to subsequently process a
    `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
    [`LogitsProcessor`] or [`LogitsWarper`] to the inputs.
    """

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
            scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
                Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
                beam search or log softmax for each vocabulary token when using beam search
            kwargs (`Dict[str, Any]`, *optional*):
                Additional kwargs that are specific to a logits processor.

        Return:
            `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
                The processed prediction scores.

        """
        for processor in self:
            function_args = inspect.signature(processor.__call__).parameters
            if len(function_args) > 2:
                if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
                    raise ValueError(
                        f"Make sure that all the required parameters: {list(function_args.keys())} for "
                        f"{processor.__class__} are passed to the logits processor."
                    )
                scores = processor(input_ids, scores, **kwargs)
            else:
                scores = processor(input_ids, scores)
        return scores


class MinLengthLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Note that, for decoder-only models
    like most LLMs, the length includes the prompt.

    Args:
        min_length (`int`):
            The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
        eos_token_id (`Union[int, List[int]]`):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.

    Examples:

    ```python
    >>> from transformers import AutoModelForCausalLM, AutoTokenizer

    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer("A number:", return_tensors="pt")
    >>> gen_out = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    A number: one

    >>> # setting `min_length` to a value smaller than the uncontrolled output length has no impact
    >>> gen_out = model.generate(**inputs, min_length=3)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    A number: one

    >>> # setting a larger `min_length` will force the model to generate beyond its natural ending point, which is not
    >>> # necessarily incorrect
    >>> gen_out = model.generate(**inputs, min_length=10)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    A number: one thousand, nine hundred and ninety-four
    ```
    """

    def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]):
        if not isinstance(min_length, int) or min_length < 0:
            raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
            logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")

        self.min_length = min_length
        self.eos_token_id = eos_token_id

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        cur_len = input_ids.shape[-1]
        if cur_len < self.min_length:
            for i in self.eos_token_id:
                scores[:, i] = -float("inf")
        return scores


class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
    Contrarily to [`MinLengthLogitsProcessor`], this processor ignores the prompt.

    Args:
        prompt_length_to_skip (`int`):
            The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the
            input length.
        min_new_tokens (`int`):
            The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
        eos_token_id (`Union[int, List[int]]`):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.

    Examples:

    ```python
    >>> from transformers import AutoModelForCausalLM, AutoTokenizer

    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer(["A number:"], return_tensors="pt")
    >>> gen_out = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    A number: one

    >>> # setting `min_new_tokens` will force the model to generate beyond its natural ending point, which is not
    >>> # necessarily incorrect
    >>> gen_out = model.generate(**inputs, min_new_tokens=2)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    A number: one thousand
    ```
    """

    def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]):
        for arg_name, arg_value in [
            ("prompt_length_to_skip", prompt_length_to_skip),
            ("min_new_tokens", min_new_tokens),
        ]:
            if not isinstance(arg_value, int) or arg_value < 0:
                raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
            logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")

        self.prompt_length_to_skip = prompt_length_to_skip
        self.min_new_tokens = min_new_tokens
        self.eos_token_id = eos_token_id

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
        if new_tokens_length < self.min_new_tokens:
            for i in self.eos_token_id:
                scores[:, i] = -float("inf")

        return scores


class TemperatureLogitsWarper(LogitsWarper):
    r"""
    [`LogitsWarper`] for temperature (exponential scaling output probability distribution), which effectively means
    that it can control the randomness of the predicted tokens. Often used together with [`TopPLogitsWarper`] and
    [`TopKLogitsWarper`].

    <Tip>

    Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have
    any effect.

    </Tip>

    Args:
        temperature (`float`):
            Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases
            randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely
            token.

    Examples:

    ```python
    >>> import torch
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> set_seed(0)  # for reproducibility

    >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
    >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
    >>> model.config.pad_token_id = model.config.eos_token_id
    >>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")

    >>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling.
    >>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2}
    >>> outputs = model.generate(**inputs, **generate_kwargs)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
    ['Hugging Face Company is a joint venture between GEO Group, one of',
    'Hugging Face Company is not an exact science – but what we believe does']

    >>> # However, with temperature close to 0, it approximates greedy decoding strategies (invariant)
    >>> generate_kwargs["temperature"] = 0.0001
    >>> outputs = model.generate(**inputs, **generate_kwargs)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
    ['Hugging Face Company is a company that has been around for over 20 years',
    'Hugging Face Company is a company that has been around for over 20 years']
    ```
    """

    def __init__(self, temperature: float):
        if not isinstance(temperature, float) or not (temperature > 0):
            except_msg = (
                f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
                "scores will be invalid."
            )
            if isinstance(temperature, float) and temperature == 0.0:
                except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
            raise ValueError(except_msg)

        self.temperature = temperature

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        scores = scores / self.temperature
        return scores


class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
    most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.

    In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
    1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
    repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
    repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.

    Args:
        penalty (`float`):
            The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
            tokens. Between 0.0 and 1.0 rewards previously generated tokens.

    Examples:

    ```py
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> # Initializing the model and tokenizer for it
    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
    >>> inputs = tokenizer(["I'm not going to"], return_tensors="pt")

    >>> # This shows a normal generate without any specific parameters
    >>> summary_ids = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
    I'm not going to be able to do that. I'm going to be able to do that

    >>> # This generates a penalty for repeated tokens
    >>> penalized_ids = model.generate(**inputs, repetition_penalty=1.1)
    >>> print(tokenizer.batch_decode(penalized_ids, skip_special_tokens=True)[0])
    I'm not going to be able to do that. I'll just have to go out and play
    ```
    """

    def __init__(self, penalty: float):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

        self.penalty = penalty

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        score = torch.gather(scores, 1, input_ids)

        # if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
        score = torch.where(score < 0, score * self.penalty, score / self.penalty)

        scores.scatter_(1, input_ids, score)
        return scores


class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that works similarly to [`RepetitionPenaltyLogitsProcessor`], but with an *inverse* penalty
    that is applied to the tokens present in the prompt. In other words, a penalty above 1.0 increases the odds of
    selecting tokens that were present in the prompt.

    It was designed to avoid hallucination in input-grounded tasks, like summarization. Although originally intended
    for encoder-decoder models, it can also be used with decoder-only models like LLMs.

    Args:
        penalty (`float`):
            The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 rewards prompt tokens. Between 0.0
            and 1.0 penalizes prompt tokens.
        encoder_input_ids (`torch.LongTensor`):
            The encoder_input_ids that should be repeated within the decoder ids.

    Examples:

    ```python
    >>> from transformers import AutoModelForCausalLM, AutoTokenizer

    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer(["Alice and Bob. The third member's name was"], return_tensors="pt")
    >>> gen_out = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    Alice and Bob. The third member's name was not mentioned.

    >>> # With the `encoder_repetition_penalty` argument we can trigger this logits processor in `generate`, which can
    >>> # promote the use of prompt tokens ("Bob" in this example)
    >>> gen_out = model.generate(**inputs, encoder_repetition_penalty=1.2)
    >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
    Alice and Bob. The third member's name was Bob. The third member's name was Bob.
    ```
    """

    def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

        self.penalty = 1 / penalty
        self.encoder_input_ids = encoder_input_ids

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        score = torch.gather(scores, 1, self.encoder_input_ids)

        # if score < 0 then hallucination penalty has to be multiplied to increase the token probabilities
        score = torch.where(score < 0, score * self.penalty, score / self.penalty)

        scores.scatter_(1, self.encoder_input_ids, score)
        return scores


class TopPLogitsWarper(LogitsWarper):
    """
    [`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Often
    used together with [`TemperatureLogitsWarper`] and [`TopKLogitsWarper`].

    Args:
        top_p (`float`):
            If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
            higher are kept for generation.
        filter_value (`float`, *optional*, defaults to -inf):
            All filtered values will be set to this float value.
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimum number of tokens that cannot be filtered.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> set_seed(0)
    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")

    >>> # With sampling, the output is unexpected -- sometimes too unexpected.
    >>> outputs = model.generate(**inputs, do_sample=True)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2

    >>> # With `top_p` sampling, the output gets restricted to high-probability tokens.
    >>> # Pro tip: In practice, LLMs use `top_p` in the 0.9-0.95 range.
    >>> outputs = model.generate(**inputs, do_sample=True, top_p=0.1)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
    ```
    """

    def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        top_p = float(top_p)
        if top_p < 0 or top_p > 1.0:
            raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
        if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
            raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")

        self.top_p = top_p
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        sorted_logits, sorted_indices = torch.sort(scores, descending=False)
        cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)

        # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p)
        # Keep at least min_tokens_to_keep
        sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class TopKLogitsWarper(LogitsWarper):
    r"""
    [`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Often used together
    with [`TemperatureLogitsWarper`] and [`TopPLogitsWarper`].

    Args:
        top_k (`int`):
            The number of highest probability vocabulary tokens to keep for top-k-filtering.
        filter_value (`float`, *optional*, defaults to -inf):
            All filtered values will be set to this float value.
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimum number of tokens that cannot be filtered.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> set_seed(0)
    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: A, B, C, D", return_tensors="pt")

    >>> # With sampling, the output is unexpected -- sometimes too unexpected.
    >>> outputs = model.generate(**inputs, do_sample=True)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: A, B, C, D, G, H, I. A, M

    >>> # With `top_k` sampling, the output gets restricted the k most likely tokens.
    >>> # Pro tip: In practice, LLMs use `top_k` in the 5-50 range.
    >>> outputs = model.generate(**inputs, do_sample=True, top_k=2)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: A, B, C, D, E, F, G, H, I
    ```
    """

    def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        if not isinstance(top_k, int) or top_k <= 0:
            raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")

        self.top_k = max(top_k, min_tokens_to_keep)
        self.filter_value = filter_value

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        top_k = min(self.top_k, scores.size(-1))  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None]
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class TypicalLogitsWarper(LogitsWarper):
    r"""
    [`LogitsWarper`] that performs typical decoding. Inspired on how humans use language, it prioritizes tokens whose
    log probability is close to the entropy of the token probability distribution. This means that the most likely
    tokens may be discarded in the process.

    See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.

    Args:
        mass (`float`, *optional*, defaults to 0.9):
            Value of typical_p between 0 and 1 inclusive, defaults to 0.9.
        filter_value (`float`, *optional*, defaults to -inf):
            All filtered values will be set to this float value.
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimum number of tokens that cannot be filtered.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer("1, 2, 3", return_tensors="pt")

    >>> # We can see that greedy decoding produces a sequence of numbers
    >>> outputs = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

    >>> # For this particular seed, we can see that sampling produces nearly the same low-information (= low entropy)
    >>> # sequence
    >>> set_seed(18)
    >>> outputs = model.generate(**inputs, do_sample=True)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    1, 2, 3, 4, 5, 6, 7, 8, 9 and 10

    >>> # With `typical_p` set, the most obvious sequence is no longer produced, which may be good for your problem
    >>> set_seed(18)
    >>> outputs = model.generate(
    ...     **inputs, do_sample=True, typical_p=0.1, return_dict_in_generate=True, output_scores=True
    ... )
    >>> print(tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0])
    1, 2, 3 and 5

    >>> # We can see that the token corresponding to "4" (token 934) in the second position, the most likely token
    >>> # as seen with greedy decoding, was entirely blocked out
    >>> print(outputs.scores[1][0, 934])
    tensor(-inf)
    ```
    """

    def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        mass = float(mass)
        if not (mass > 0 and mass < 1):
            raise ValueError(f"`typical_p` has to be a float > 0 and < 1, but is {mass}")
        if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
            raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")

        self.filter_value = filter_value
        self.mass = mass
        self.min_tokens_to_keep = min_tokens_to_keep

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # calculate entropy
        normalized = torch.nn.functional.log_softmax(scores, dim=-1)
        p = torch.exp(normalized)
        ent = -(normalized * p).nansum(-1, keepdim=True)

        # shift and sort
        shifted_scores = torch.abs((-normalized) - ent)
        sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
        sorted_logits = scores.gather(-1, sorted_indices)
        cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)

        # Remove tokens with cumulative mass above the threshold
        last_ind = (cumulative_probs < self.mass).sum(dim=1)
        last_ind.clamp_(max=sorted_scores.shape[-1] - 1)
        sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
        sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)

        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class EpsilonLogitsWarper(LogitsWarper):
    r"""
    [`LogitsWarper`] that performs epsilon-sampling, i.e. restricting to tokens with `prob >= epsilon`. Takes the
    largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See [Truncation Sampling as Language Model
    Desmoothing](https://arxiv.org/abs/2210.15191) for more information.

    Args:
        epsilon (`float`):
            If set to > 0, only the most tokens with probabilities `epsilon` or higher are kept for generation.
        filter_value (`float`, *optional*, defaults to -inf):
            All filtered values will be set to this float value.
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimum number of tokens that cannot be filtered.

    Examples:
    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> set_seed(0)
    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")

    >>> # With sampling, the output is unexpected -- sometimes too unexpected.
    >>> outputs = model.generate(**inputs, do_sample=True)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2

    >>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to
    >>> # Top P sampling, which restricts tokens based on their cumulative probability.
    >>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4
    >>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
    ```
    """

    def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        epsilon = float(epsilon)
        if epsilon <= 0 or epsilon >= 1:
            raise ValueError(f"`epsilon_cutoff` has to be a float > 0 and < 1, but is {epsilon}")

        min_tokens_to_keep = int(min_tokens_to_keep)
        if min_tokens_to_keep < 1:
            raise ValueError(
                f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
            )

        self.epsilon = epsilon
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # Determine which indices to remove
        probabilities = scores.softmax(dim=-1)
        indices_to_remove = probabilities < self.epsilon

        # Keep the words with the 'min_tokens_to_keep'-highest probabilities
        top_k = min(self.min_tokens_to_keep, scores.size(-1))  # Safety check
        indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])

        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class EtaLogitsWarper(LogitsWarper):
    r"""
    [`LogitsWarper`] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic
    cutoff value, `eta`, which is calculated based on a combination of the hyperparameter `epsilon` and the entropy of
    the token probabilities, i.e. `eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))`. Takes the largest
    min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long
    samples of text generated by neural language models leading to more coherent and fluent text. See [Truncation
    Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Note: `do_sample`
    must be set to `True` for this `LogitsWarper` to work.


    Args:
        epsilon (`float`):
            A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value, `eta`. The
            suggested values from the paper ranges from 3e-4 to 4e-3 depending on the size of the model.
        filter_value (`float`, *optional*, defaults to -inf):
            All values that are found to be below the dynamic cutoff value, `eta`, are set to this float value. This
            parameter is useful when logits need to be modified for very low probability tokens that should be excluded
            from generation entirely.
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities.
            For example, if `min_tokens_to_keep` is set to 1, at least one token will always be kept for generation,
            even if all tokens have probabilities below the cutoff `eta`.

    Examples:
    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> set_seed(0)
    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")

    >>> # With sampling, the output is unexpected -- sometimes too unexpected.
    >>> outputs = model.generate(**inputs, do_sample=True)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2

    >>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of
    >>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff).
    >>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3
    >>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
    ```
    """

    def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        epsilon = float(epsilon)
        if epsilon <= 0 or epsilon >= 1:
            raise ValueError(f"`eta_cutoff` has to be a float > 0 and < 1, but is {epsilon}")

        min_tokens_to_keep = int(min_tokens_to_keep)
        if min_tokens_to_keep < 1:
            raise ValueError(
                f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
            )

        self.epsilon = torch.tensor(epsilon)
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # Calculate the adaptive cutoff
        probabilities = scores.softmax(dim=-1)
        entropy = torch.distributions.Categorical(logits=scores).entropy()
        eta = torch.min(self.epsilon, torch.sqrt(self.epsilon) * torch.exp(-entropy))[..., None]
        indices_to_remove = probabilities < eta

        # Keep the words with the 'min_tokens_to_keep'-highest probabilities
        top_k = min(self.min_tokens_to_keep, scores.size(-1))  # Safety check
        indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])

        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
    """
    Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like
    this {(40,): [2883], (2883,): [2712], (2712,): [4346]}.

    Args:
        ngram_size (`int`):
            The number sequential tokens taken as a group which may only occur once before being banned.
        prev_input_ids (`torch.Tensor`):
           Generated token ids for the current hypothesis.
        num_hypos (`int`):
            The number of hypotheses for which n-grams need to be generated.

    Returns:
        generated_ngrams (`dict`):
            Dictionary of generated ngrams.
    """
    # Initialize an empty list of dictionaries, one for each hypothesis (index) in the range of num_hypos
    generated_ngrams = [{} for _ in range(num_hypos)]
    for idx in range(num_hypos):
        gen_tokens = prev_input_ids[idx].tolist()
        generated_ngram = generated_ngrams[idx]
        # Loop through each n-gram of size ngram_size in the list of tokens (gen_tokens)
        for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
            prev_ngram_tuple = tuple(ngram[:-1])
            generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
    return generated_ngrams


def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
    """
    Determines the banned tokens for the current hypothesis based on previously generated n-grams.

    Args:
        banned_ngrams (`dict`):
            A dictionary containing previously generated n-grams for each hypothesis.
        prev_input_ids (`torch.Tensor`):
            Generated token ids for the current hypothesis.
        ngram_size (`int`):
            The number sequential tokens taken as a group which may only occur once before being banned.
        cur_len (`int`):
            The current length of the token sequences for which the n-grams are being checked.

    Returns:
        List of tokens that are banned.
    """
    # Before decoding the next token, prevent decoding of ngrams that have already appeared
    start_idx = cur_len + 1 - ngram_size
    ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
    return banned_ngrams.get(ngram_idx, [])


def _calc_banned_ngram_tokens(
    ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
    """Copied from fairseq for no_repeat_ngram in beam_search"""
    if cur_len + 1 < ngram_size:
        # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
        return [[] for _ in range(num_hypos)]
    generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos)
    banned_tokens = [
        _get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
        for hypo_idx in range(num_hypos)
    ]
    return banned_tokens


class NoRepeatNGramLogitsProcessor(LogitsProcessor):
    r"""
    N-grams are groups of "n" consecutive words, characters, or tokens taken from a sequence of text. Given the
    sentence: "She runs fast", the bi-grams (n=2) would be ("she", "runs") and ("runs", "fast"). In text generation,
    avoiding repetitions of word sequences provides a more diverse output. This [`LogitsProcessor`] enforces no
    repetition of n-grams by setting the scores of banned tokens to negative infinity which eliminates those tokens
    from consideration when further processing the scores. Note that, for decoder-only models like most LLMs, the
    prompt is also considered to obtain the n-grams.
    [Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).

    <Tip>

    Use n-gram penalties with care. For instance, penalizing 2-grams (bigrams) in an article about the city of New York
    might lead to undesirable outcomes where the city's name appears only once in the entire text.
    [Reference](https://huggingface.co/blog/how-to-generate)

    </Tip>

    Args:
        ngram_size (`int`):
            All ngrams of size `ngram_size` can only occur once.

    Examples:

    ```py
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
    >>> inputs = tokenizer(["Today I"], return_tensors="pt")

    >>> output = model.generate(**inputs)
    >>> print(tokenizer.decode(output[0], skip_special_tokens=True))
    Today I’m not sure if I’m going to be able to do it.

    >>> # Now let's add ngram size using `no_repeat_ngram_size`. This stops the repetitions ("I’m") in the output.
    >>> output = model.generate(**inputs, no_repeat_ngram_size=2)
    >>> print(tokenizer.decode(output[0], skip_special_tokens=True))
    Today I’m not sure if I can get a better understanding of the nature of this issue
    ```
    """

    def __init__(self, ngram_size: int):
        if not isinstance(ngram_size, int) or ngram_size <= 0:
            raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
        self.ngram_size = ngram_size

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        num_batch_hypotheses = scores.shape[0]
        cur_len = input_ids.shape[-1]
        banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
        for i, banned_tokens in enumerate(banned_batch_tokens):
            scores[i, banned_tokens] = -float("inf")

        return scores


class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that works similarly to [`NoRepeatNGramLogitsProcessor`], but applied exclusively to prevent
    the repetition of n-grams present in the prompt.

    It was designed to promote chattiness in a language model, by preventing the generation of n-grams present in
    previous conversation rounds.

    Args:
        encoder_ngram_size (`int`):
            All ngrams of size `ngram_size` can only occur within the encoder input ids.
        encoder_input_ids (`int`):
            The encoder_input_ids that should not be repeated within the decoder ids.

    Examples:

    ```py
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer("Alice: I love cats. What do you love?\nBob:", return_tensors="pt")

    >>> # With greedy decoding, we see Bob repeating Alice's opinion. If Bob was a chatbot, it would be a poor one.
    >>> outputs = model.generate(**inputs)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    Alice: I love cats. What do you love?
    Bob: I love cats. What do you

    >>> # With this logits processor, we can prevent Bob from repeating Alice's opinion.
    >>> outputs = model.generate(**inputs, encoder_no_repeat_ngram_size=2)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    Alice: I love cats. What do you love?
    Bob: My cats are very cute.
    ```
    """

    def __init__(self, encoder_ngram_size: int, encoder_input_ids: torch.LongTensor):
        if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0:
            raise ValueError(
                f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}"
            )
        self.ngram_size = encoder_ngram_size
        if len(encoder_input_ids.shape) == 1:
            encoder_input_ids = encoder_input_ids.unsqueeze(0)
        self.batch_size = encoder_input_ids.shape[0]
        self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size)

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # B x num_beams
        num_hypos = scores.shape[0]
        num_beams = num_hypos // self.batch_size
        cur_len = input_ids.shape[-1]
        banned_batch_tokens = [
            _get_generated_ngrams(
                self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len
            )
            for hypo_idx in range(num_hypos)
        ]

        for i, banned_tokens in enumerate(banned_batch_tokens):
            scores[i, banned_tokens] = -float("inf")

        return scores


class SequenceBiasLogitsProcessor(LogitsProcessor):
    """
    [`LogitsProcessor`] that applies an additive bias on sequences. The bias is applied to the last token of a sequence
    when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than
    one token, consider using beam methods (to gracefully work around partially completed sequences that have a
    negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier).

    <Tip>

    In order to get the token ids of the sequences that you want to bias, make sure to set `add_prefix_space=True` when
    initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The
    `add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours
    come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).

    </Tip>

    Args:
        sequence_bias (`Dict[Tuple[int], float]`):
            Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
            sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias
            will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be
            completed (in the token selection step after this processor is applied).

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
    >>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt")

    >>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4)
    >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
    The full name of Donald is Donald J. Trump Jr

    >>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently!
    >>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)


    >>> def get_tokens_as_tuple(word):
    ...     return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])


    >>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations
    >>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0}
    >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias)
    >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
    The full name of Donald is Donald J. Donald,

    >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
    >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
    The full name of Donald is Donald Rumsfeld,

    >>> # We can also add a positive bias to nudge the model towards specific tokens or continuations
    >>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0}
    >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
    >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
    The full name of Donald is Donald Duck.
    ```
    """

    def __init__(self, sequence_bias: Dict[Tuple[int], float]):
        self.sequence_bias = sequence_bias
        self._validate_arguments()

        # Bias variables that will be populated on the first call (for retrocompatibility purposes, the vocabulary size
        # is infered in the first usage, which inhibits initializing here)
        self.length_1_bias = None
        self.prepared_bias_variables = False

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # 1 - Prepares the bias tensors. This is only needed the first time the logit processor is called.
        if not self.prepared_bias_variables:
            self._prepare_bias_variables(scores)

        # 2 - prepares an empty bias to add
        bias = torch.zeros_like(scores)

        # 3 - include the bias from length = 1
        bias += self.length_1_bias

        # 4 - include the bias from length > 1, after determining which biased sequences may be completed.
        for sequence_ids, sequence_bias in self.sequence_bias.items():
            if len(sequence_ids) == 1:  # the sequence is of length 1, already applied
                continue
            if len(sequence_ids) > input_ids.shape[1]:  # the sequence is longer than the context, ignore
                continue
            prefix_length = len(sequence_ids) - 1
            last_token = sequence_ids[-1]
            matching_rows = torch.eq(
                input_ids[:, -prefix_length:],
                torch.tensor(sequence_ids[:-1], dtype=input_ids.dtype, device=input_ids.device),
            ).prod(dim=1)
            bias[:, last_token] += torch.where(
                matching_rows.bool(),
                torch.tensor(sequence_bias, device=input_ids.device),
                torch.tensor(0.0, device=input_ids.device),
            )

        # 5 - apply the bias to the scores
        scores = scores + bias
        return scores

    def _prepare_bias_variables(self, scores: torch.FloatTensor):
        vocabulary_size = scores.shape[-1]

        # Check biased tokens out of bounds
        invalid_biases = []
        for sequence_ids in self.sequence_bias:
            for token_id in sequence_ids:
                if token_id >= vocabulary_size:
                    invalid_biases.append(token_id)
        if len(invalid_biases) > 0:
            raise ValueError(
                f"The model vocabulary size is {vocabulary_size}, but the following tokens were being biased: "
                f"{invalid_biases}"
            )

        # Precompute the bias tensors to be applied. Sequences of length 1 are kept separately, as they can be applied
        # with simpler logic.
        self.length_1_bias = torch.zeros((vocabulary_size,), dtype=torch.float).to(scores.device)
        for sequence_ids, bias in self.sequence_bias.items():
            if len(sequence_ids) == 1:
                self.length_1_bias[sequence_ids[-1]] = bias

        self.prepared_bias_variables = True

    def _validate_arguments(self):
        sequence_bias = self.sequence_bias
        if not isinstance(sequence_bias, dict) or len(sequence_bias) == 0:
            raise ValueError(f"`sequence_bias` has to be a non-empty dictionary, but is {sequence_bias}.")
        if any(not isinstance(sequence_ids, tuple) for sequence_ids in sequence_bias.keys()):
            raise ValueError(f"`sequence_bias` has to be a dict with tuples as keys, but is {sequence_bias}.")
        if any(
            any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in sequence_ids)
            or len(sequence_ids) == 0
            for sequence_ids in sequence_bias.keys()
        ):
            raise ValueError(
                f"Each key in `sequence_bias` has to be a non-empty tuple of positive integers, but is "
                f"{sequence_bias}."
            )
        if any(not isinstance(bias, float) for bias in sequence_bias.values()):
            raise ValueError(f"`sequence_bias` has to be a dict with floats as values, but is {sequence_bias}.")


class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
    """
    [`LogitsProcessor`] that enforces that specified sequences will never be selected.

    <Tip>

    In order to get the token ids of the words that should not appear in the generated text, make sure to set
    `add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words,
    add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers,
    as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more
    [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).

    </Tip>

    Args:
        bad_words_ids (`List[List[int]]`):
            List of list of token ids that are not allowed to be generated.
        eos_token_id (`Union[int, List[int]]`):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
    >>> inputs = tokenizer(["In a word, the cake is a"], return_tensors="pt")

    >>> output_ids = model.generate(inputs["input_ids"], max_new_tokens=5, pad_token_id=tokenizer.eos_token_id)
    >>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
    In a word, the cake is a bit of a mess.

    >>> # Now let's take the bad words out. Please note that the tokenizer is initialized differently
    >>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True)


    >>> def get_tokens_as_list(word_list):
    ...     "Converts a sequence of words into a list of tokens"
    ...     tokens_list = []
    ...     for word in word_list:
    ...         tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
    ...         tokens_list.append(tokenized_word)
    ...     return tokens_list


    >>> bad_words_ids = get_tokens_as_list(word_list=["mess"])
    >>> output_ids = model.generate(
    ...     inputs["input_ids"], max_new_tokens=5, bad_words_ids=bad_words_ids, pad_token_id=tokenizer.eos_token_id
    ... )
    >>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
    In a word, the cake is a bit of a surprise.
    ```
    """

    def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]):
        self.bad_word_ids = bad_words_ids
        self._validate_arguments()

        # Filter EOS token from bad_words_ids
        if eos_token_id is None:
            eos_token_id = []
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        bad_words_ids = list(
            filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
        )

        # Forbidding a sequence is equivalent to setting its bias to -inf
        sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids}
        super().__init__(sequence_bias=sequence_bias)

    def _validate_arguments(self):
        bad_words_ids = self.bad_word_ids
        if not isinstance(bad_words_ids, list) or len(bad_words_ids) == 0:
            raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.")
        if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
            raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
        if any(
            any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
            for bad_word_ids in bad_words_ids
        ):
            raise ValueError(
                f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
            )


class PrefixConstrainedLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that enforces constrained generation and is useful for prefix-conditioned constrained
    generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information.

    Args:
        prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
            This function constraints the beam search to allowed tokens only at each step. This function takes 2
            arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
            next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
            `batch_id`.

    Examples:

    ```py
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
    >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")

    >>> inputs = tokenizer("Alice and Bob", return_tensors="pt")

    >>> # By default, it continues generating according to the model's logits
    >>> outputs = model.generate(**inputs, max_new_tokens=5)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    Alice and Bob are friends

    >>> # We can contrain it with `prefix_allowed_tokens_fn` to force a certain behavior based on a prefix.
    >>> # For instance, we can force an entire entity to be generated when its beginning is detected.
    >>> entity =  tokenizer(" Bob Marley", return_tensors="pt").input_ids[0]  # 3 tokens
    >>> def prefix_allowed_tokens_fn(batch_id, input_ids):
    ...     '''
    ...     Attempts to generate 'Bob Marley' when 'Bob' is detected.
    ...     In this case, `batch_id` is not used, but you can set rules for each batch member.
    ...     '''
    ...     if input_ids[-1] == entity[0]:
    ...         return entity[1]
    ...     elif input_ids[-2] == entity[0] and input_ids[-1] == entity[1]:
    ...         return entity[2]
    ...     return list(range(tokenizer.vocab_size))  # If no match, allow all tokens

    >>> outputs = model.generate(**inputs, max_new_tokens=5, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn)
    >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
    Alice and Bob Marley
    ```
    """

    def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int):
        self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
        self._num_beams = num_beams

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        mask = torch.full_like(scores, -math.inf)
        for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])):
            for beam_id, sent in enumerate(beam_sent):
                prefix_allowed_tokens = self._prefix_allowed_tokens_fn(batch_id, sent)
                if len(prefix_allowed_tokens) == 0:
                    raise ValueError(
                        f"`prefix_allowed_tokens_fn` returned an empty list for batch ID {batch_id}."
                        f"This means that the constraint is unsatisfiable. Please check your implementation"
                        f"of `prefix_allowed_tokens_fn` "
                    )
                mask[batch_id * self._num_beams + beam_id, prefix_allowed_tokens] = 0

        return scores + mask


class HammingDiversityLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that enforces diverse beam search.

    Note that this logits processor is only effective for [`PreTrainedModel.group_beam_search`]. See [Diverse Beam
    Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf) for more
    details.

    Traditional beam search often generates very similar sequences across different beams.
    `HammingDiversityLogitsProcessor` addresses this by penalizing beams that generate tokens already chosen by other
    beams in the same time step.

    Args:
        diversity_penalty (`float`):
            This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
            particular time. A higher `diversity_penalty` will enforce greater diversity among the beams. Adjusting
            this value can help strike a balance between diversity and natural likelihood.
        num_beams (`int`):
            Number of beams for beam search. 1 means no beam search.
        num_beam_groups (`int`):
            Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
            [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
    >>> import torch

    >>> # Initialize the model and tokenizer
    >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
    >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

    >>> # A long text about the solar system
    >>> text = (
    ...     "The Solar System is a gravitationally bound system comprising the Sun and the objects that orbit it, "
    ...     "either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight "
    ...     "planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System "
    ...     "bodies. The Solar System formed 4.6 billion years ago from the gravitational collapse of a giant "
    ...     "interstellar molecular cloud."
    ... )
    >>> inputs = tokenizer("summarize: " + text, return_tensors="pt")

    >>> # Generate diverse summary
    >>> outputs_diverse = model.generate(
    ...     **inputs,
    ...     num_beam_groups=2,
    ...     diversity_penalty=10.0,
    ...     max_length=100,
    ...     num_beams=4,
    ...     num_return_sequences=2,
    ... )
    >>> summaries_diverse = tokenizer.batch_decode(outputs_diverse, skip_special_tokens=True)

    >>> # Generate non-diverse summary
    >>> outputs_non_diverse = model.generate(
    ...     **inputs,
    ...     max_length=100,
    ...     num_beams=4,
    ...     num_return_sequences=2,
    ... )
    >>> summary_non_diverse = tokenizer.batch_decode(outputs_non_diverse, skip_special_tokens=True)

    >>> # With `diversity_penalty`, the resulting beams are much more diverse
    >>> print(summary_non_diverse)
    ['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
    'the Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.']

    >>> print(summaries_diverse)
    ['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
    'the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets. the rest of the objects are smaller objects, such as the five dwarf planets and small solar system bodies.']
    ```
    """

    def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int):
        if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0):
            raise ValueError("`diversity_penalty` should be a float strictly larger than 0.")
        self._diversity_penalty = diversity_penalty
        if not isinstance(num_beams, int) or num_beams < 2:
            raise ValueError("`num_beams` should be an integer strictly larger than 1.")
        self._num_beams = num_beams
        if not isinstance(num_beam_groups, int) or num_beam_groups < 2:
            raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.")
        if num_beam_groups > num_beams:
            raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.")
        self._num_sub_beams = num_beams // num_beam_groups

    def __call__(
        self,
        input_ids: torch.LongTensor,
        scores: torch.FloatTensor,
        current_tokens: torch.LongTensor,
        beam_group_idx: int,
    ) -> torch.FloatTensor:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
            scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
                Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
                beam search or log softmax for each vocabulary token when using beam search
            current_tokens (`torch.LongTensor` of shape `(batch_size)`):
                Indices of input sequence tokens in the vocabulary, corresponding to the tokens selected by the other
                beam groups in the current generation step.
            beam_group_idx (`int`):
                The index of the beam group currently being processed.

        Return:
            `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
                The processed prediction scores.
        """
        # hamming diversity: penalise using same token in current group which was used in previous groups at
        # the same time step
        batch_size = current_tokens.shape[0] // self._num_beams
        group_start_idx = beam_group_idx * self._num_sub_beams
        group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams)
        group_size = group_end_idx - group_start_idx
        vocab_size = scores.shape[-1]

        if group_start_idx == 0:
            return scores

        for batch_idx in range(batch_size):
            # predicted tokens of last time step of previous groups
            previous_group_tokens = current_tokens[
                batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx
            ]
            token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device)
            scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency

        return scores


class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that enforces the specified token as the first generated token. Used with encoder-decoder
    models.

    Args:
        bos_token_id (`int`):
            The id of the token to force as the first generated token.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

    >>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
    >>> tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")

    >>> inputs = tokenizer("Translate from English to German: I love cats.", return_tensors="pt")

    >>> # By default, it continues generating according to the model's logits
    >>> outputs = model.generate(**inputs, max_new_tokens=10)
    >>> print(tokenizer.batch_decode(outputs)[0])
    <pad> Ich liebe Kitty.</s>

    >>> # We can use `forced_bos_token_id` to force the start of generation with an encoder-decoder model
    >>> # (including forcing it to end straight away with an EOS token)
    >>> outputs = model.generate(**inputs, max_new_tokens=10, forced_bos_token_id=tokenizer.eos_token_id)
    >>> print(tokenizer.batch_decode(outputs)[0])
    <pad></s>
    ```
    """

    def __init__(self, bos_token_id: int):
        self.bos_token_id = bos_token_id

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        cur_len = input_ids.shape[-1]
        if cur_len == 1:
            num_tokens = scores.shape[1]
            scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
            scores[:, self.bos_token_id] = 0
        return scores


class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.

    Args:
        max_length (`int`):
            The maximum length of the sequence to be generated.
        eos_token_id (`Union[int, List[int]]`):
            The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
            list to set multiple *end-of-sequence* tokens.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")

    >>> # By default, it continues generating according to the model's logits
    >>> outputs = model.generate(**inputs, max_new_tokens=10)
    >>> print(tokenizer.batch_decode(outputs)[0])
    A sequence: 1, 2, 3, 4, 5, 6, 7, 8

    >>> # `forced_eos_token_id` ensures the generation ends with a EOS token
    >>> outputs = model.generate(**inputs, max_new_tokens=10, forced_eos_token_id=tokenizer.eos_token_id)
    >>> print(tokenizer.batch_decode(outputs)[0])
    A sequence: 1, 2, 3, 4, 5, 6, 7,<|endoftext|>
    ```
    """

    def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]):
        self.max_length = max_length
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        self.eos_token_id = eos_token_id

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        cur_len = input_ids.shape[-1]
        if cur_len == self.max_length - 1:
            num_tokens = scores.shape[1]
            scores[:, [i for i in range(num_tokens) if i not in self.eos_token_id]] = -float("inf")
            for i in self.eos_token_id:
                scores[:, i] = 0
        return scores


class InfNanRemoveLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that removes all `nan` and `inf` values to avoid the generation method to fail. Note that using
    the logits processor should only be used if necessary since it can slow down the generation method.

    This logits processor has no `generate` example, as there shouldn't be a correct combination of flags that warrants
    its use.
    """

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # set all nan values to 0.0
        scores[scores != scores] = 0.0

        # set all +/-inf values to max/min possible value
        scores[scores == float("inf")] = torch.finfo(scores.dtype).max
        scores[scores == float("-inf")] = torch.finfo(scores.dtype).min

        return scores


class ExponentialDecayLengthPenalty(LogitsProcessor):
    r"""
    [`LogitsProcessor`] that exponentially increases the score of the `eos_token_id` after `start_index` has been
    reached. This allows generating shorter sequences without having a hard cutoff, allowing the `eos_token` to be
    predicted in a meaningful position.

    Args:
        exponential_decay_length_penalty (`tuple(int, float)`):
            This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
            starts and `decay_factor` represents the factor of exponential decay
        eos_token_id (`Union[int, List[int]]`):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        input_ids_seq_length (`int`):
            The length of the input sequence.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed

    >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")

    >>> text = "Just wanted to let you know, I"
    >>> inputs = tokenizer(text, return_tensors="pt")

    >>> # Let's consider that we want short sentences, so we limit `max_length=30`. However, we observe that the answer
    >>> # tends to end abruptly.
    >>> set_seed(1)
    >>> outputs = model.generate(**inputs, do_sample=True, temperature=0.9, max_length=30, pad_token_id=50256)
    >>> print(tokenizer.batch_decode(outputs)[0])
    Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
    published in 2010. Although

    >>> # To promote the appearance of the EOS token at the right time, we add the `exponential_decay_length_penalty =
    >>> # (start_index, decay_factor)`. Instead of cutting at max_tokens, the output comes to an end before and usually
    >>> # with more meaning. What happens is that starting from `start_index` the EOS token score will be increased
    >>> # by `decay_factor` exponentially. However, if you set a high decay factor, you may also end up with abruptly
    >>> # ending sequences.
    >>> set_seed(1)
    >>> outputs = model.generate(
    ...     **inputs,
    ...     do_sample=True,
    ...     temperature=0.9,
    ...     max_length=30,
    ...     pad_token_id=50256,
    ...     exponential_decay_length_penalty=(15, 1.6),
    ... )
    >>> print(tokenizer.batch_decode(outputs)[0])
    Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network
    which<|endoftext|>

    >>> # With a small decay factor, you will have a higher chance of getting a meaningful sequence.
    >>> set_seed(1)
    >>> outputs = model.generate(
    ...     **inputs,
    ...     do_sample=True,
    ...     temperature=0.9,
    ...     max_length=30,
    ...     pad_token_id=50256,
    ...     exponential_decay_length_penalty=(15, 1.01),
    ... )
    >>> print(tokenizer.batch_decode(outputs)[0])
    Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
    published in 2010.<|endoftext|>
    ```
    """

    def __init__(
        self,
        exponential_decay_length_penalty: Tuple[int, float],
        eos_token_id: Union[int, List[int]],
        input_ids_seq_length: int,
    ):
        self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
        self.regulation_factor = exponential_decay_length_penalty[1]
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        self.eos_token_id = eos_token_id

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        cur_len = input_ids.shape[-1]
        if cur_len > self.regulation_start:
            for i in self.eos_token_id:
                penalty_idx = cur_len - self.regulation_start
                # To support negative logits we compute the penalty of the absolute value and add to the original logit
                scores[:, i] = scores[:, i] + torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1)
        return scores


class LogitNormalization(LogitsProcessor, LogitsWarper):
    r"""
    [`LogitsWarper`] and [`LogitsProcessor`] for normalizing the scores using log-softmax. It's important to normalize
    the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in
    this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that
    the scores are normalized when comparing the hypotheses.

    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM
    >>> import torch

    >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

    >>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")

    >>> # By default, the scores are not normalized -- the sum of their exponentials is NOT a normalized probability
    >>> # distribution, summing to 1
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
    >>> print(torch.sum(torch.exp(outputs.scores[-1])))
    tensor(816.3250)

    >>> # Normalizing them may have a positive impact on beam methods, or when using the scores on your application
    >>> outputs = model.generate(**inputs, renormalize_logits=True, return_dict_in_generate=True, output_scores=True)
    >>> print(torch.sum(torch.exp(outputs.scores[-1])))
    tensor(1.0000)
    ```
    """

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        scores = scores.log_softmax(dim=-1)
        return scores


class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
    r"""
    [`SuppressTokensAtBeginLogitsProcessor`] supresses a list of tokens as soon as the `generate` function starts
    generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are
    not generated at the begining. Originally created for
    [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).

    Examples:

    ```python
    >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
    >>> from datasets import load_dataset

    >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
    >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
    >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")

    >>> # Whisper has `begin_suppress_tokens` set by default (= `[220, 50256]`). 50256 is the EOS token, so this means
    >>> # it can't generate and EOS token in the first iteration, but it can in the others.
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
    >>> print(outputs.scores[1][0, 50256])  # 1 (and not 0) is the first freely generated token
    tensor(-inf)
    >>> print(outputs.scores[-1][0, 50256])  # in other places we can see some probability mass for EOS
    tensor(29.9010)

    >>> # If we disable `begin_suppress_tokens`, we can generate EOS in the first iteration.
    >>> outputs = model.generate(
    ...     **inputs, return_dict_in_generate=True, output_scores=True, begin_suppress_tokens=None
    ... )
    >>> print(outputs.scores[1][0, 50256])
    tensor(11.2027)
    ```
    """

    def __init__(self, begin_suppress_tokens, begin_index):
        self.begin_suppress_tokens = list(begin_suppress_tokens)
        self.begin_index = begin_index

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if input_ids.shape[1] == self.begin_index:
            scores[:, self.begin_suppress_tokens] = -float("inf")

        return scores


class SuppressTokensLogitsProcessor(LogitsProcessor):
    r"""
    This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so
    that they are not generated. Originally created for
    [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).

    Examples:

    ```python
    >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
    >>> from datasets import load_dataset

    >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
    >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
    >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")

    >>> # Whisper has a long list of suppressed tokens. For instance, in this case, the token 1 is suppressed by default.
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
    >>> print(outputs.scores[1][0, 1])  # 1 (and not 0) is the first freely generated token
    tensor(-inf)

    >>> # If we disable `suppress_tokens`, we can generate it.
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, suppress_tokens=None)
    >>> print(outputs.scores[1][0, 1])
    tensor(5.7738)
    ```
    """

    def __init__(self, suppress_tokens):
        self.suppress_tokens = list(suppress_tokens)

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        scores[:, self.suppress_tokens] = -float("inf")
        return scores


class ForceTokensLogitsProcessor(LogitsProcessor):
    r"""
    This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
    indices that will be forced before generation. The processor will set their log probs to `inf` so that they are
    sampled at their corresponding index. Originally created for
    [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).

    Examples:
    ```python
    >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
    >>> from datasets import load_dataset

    >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
    >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
    >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")

    >>> # This Whisper model forces the generation to start with `50362` at the first position by default, i.e.
    >>> # `"forced_decoder_ids": [[1, 50362]]`. This means all other tokens are masked out.
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
    >>> print(
    ...     all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
    ... )
    True
    >>> print(outputs.scores[0][0, 50362])
    tensor(0.)

    >>> # If we disable `forced_decoder_ids`, we stop seeing that effect
    >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, forced_decoder_ids=None)
    >>> print(
    ...     all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
    ... )
    False
    >>> print(outputs.scores[0][0, 50362])
    tensor(19.3140)
    ```
    """

    def __init__(self, force_token_map: List[List[int]]):
        self.force_token_map = dict(force_token_map)

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        generation_idx = input_ids.shape[-1]
        current_token = self.force_token_map.get(generation_idx, None)
        if current_token is not None:
            scores[:, :] = -float("inf")
            scores[:, current_token] = 0
        return scores


class WhisperTimeStampLogitsProcessor(LogitsProcessor):
    r"""

    [`LogitsProcessor`] that modifies the logits for the generation of timestamps in the transcription. When the input
    tokens are at a specific threshold, the processor sets the scores to negative infinity. The processor makes sure
    that timestamp tokens appear in pairs, by masking out the logits that would break this pairing pattern. This is
    done to maintain the consistency and structure of generated timestamps. It also ensures that when the predicted
    probability of sampling any of the timestamp token is greater than any individual non-timestamp token, those
    non-timestamp logits are set to negative infinity. This is done to ensure the generation of timestamps over other
    potential tokens.


    See [the paper](https://arxiv.org/abs/2212.04356) for more information.

    Args:
        generate_config (`GenerateConfig`):
            The generate config used to generate the output. The following parameters are required:
                eos_token_id (`int`, *optional*, defaults to 50257):
                    The id of the *end-of-sequence* token.
                no_timestamps_token_id (`int`, *optional*, defaults to 50363):
                    The id of the `"<|notimestamps|>"` token.
                max_initial_timestamp_index (`int`, *optional*, defaults to 1):
                    Used to set the maximum value of the initial timestamp. This is used to prevent the model from
                    predicting timestamps that are too far in the future.
        _detect_timestamp_from_logprob (`bool`, *optional*): Whether timestamps can be predicted from logprobs over all timestamps.

    Examples:
    ``` python
    >>> import torch
    >>> from transformers import AutoProcessor, WhisperForConditionalGeneration, GenerationConfig
    >>> from datasets import load_dataset

    >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
    >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
    >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    >>> inputs = processor(ds[3]["audio"]["array"], return_tensors="pt")
    >>> input_features = inputs.input_features

    >>> #Displaying timestamps
    >>> generated_ids = model.generate(inputs=input_features, return_timestamps=True)
    >>> transcription = processor.batch_decode(generated_ids, decode_with_timestamps=True)[0]
    >>> print("Transcription:", transcription)
    Transcription: <|startoftranscript|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all, and can<|6.44|><|6.44|> discover in it but little of rocky Ithaca.<|9.44|><|endoftext|>


    >>> #No timestamps & change EOS:
    >>> #This allows the user to select a specific token to terminate the sequence on, in this case it's the word "can"(460)
    >>> model.generation_config.eos_token_id = 460
    >>> generated_ids = model.generate(inputs=input_features,return_timestamps=False)
    >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    >>> print("Transcription:", transcription)
    Transcription:  He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can
    ```
    """

    def __init__(
        self, generate_config, _detect_timestamp_from_logprob: Optional[bool] = None
    ):  # support for the kwargs
        self.eos_token_id = generate_config.eos_token_id
        self.no_timestamps_token_id = generate_config.no_timestamps_token_id
        self.timestamp_begin = generate_config.no_timestamps_token_id + 1

        # this variable is mostly just used for testing
        self._detect_timestamp_from_logprob = (
            _detect_timestamp_from_logprob
            if _detect_timestamp_from_logprob is not None
            else getattr(generate_config, "_detect_timestamp_from_logprob", True)
        )

        self.begin_index = (
            len(generate_config.forced_decoder_ids) + 1 if generate_config.forced_decoder_ids is not None else 1
        )
        self.max_initial_timestamp_index = getattr(generate_config, "max_initial_timestamp_index", None)

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # suppress <|notimestamps|> which is handled by without_timestamps
        scores[:, self.no_timestamps_token_id] = -float("inf")

        # timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly
        for k in range(input_ids.shape[0]):
            sampled_tokens = input_ids[k, self.begin_index :]
            seq = list(sampled_tokens.tolist())

            last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin
            penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin

            if last_was_timestamp:
                if penultimate_was_timestamp:  # has to be non-timestamp
                    scores[k, self.timestamp_begin :] = -float("inf")
                else:  # cannot be normal text tokens
                    scores[k, : self.eos_token_id] = -float("inf")

            timestamps = sampled_tokens[sampled_tokens.ge(self.timestamp_begin)]
            if timestamps.numel() > 0:
                # `timestamps` shouldn't decrease; forbid timestamp tokens smaller than the last
                # The following lines of code are copied from: https://github.com/openai/whisper/pull/914/files#r1137085090
                if last_was_timestamp and not penultimate_was_timestamp:
                    timestamp_last = timestamps[-1]
                else:
                    # Avoid to emit <|0.00|> again
                    timestamp_last = timestamps[-1] + 1

                scores[k, self.timestamp_begin : timestamp_last] = -float("inf")

        # apply the `max_initial_timestamp` option
        if input_ids.shape[1] == self.begin_index:
            scores[:, : self.timestamp_begin] = -float("inf")

            if self.max_initial_timestamp_index is not None:
                last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
                scores[:, last_allowed + 1 :] = -float("inf")

        # if sum of probability over timestamps is above any other token, sample timestamp
        logprobs = torch.nn.functional.log_softmax(scores.float(), dim=-1)
        for k in range(input_ids.shape[0]):
            timestamp_logprob = logprobs[k, self.timestamp_begin :].logsumexp(dim=-1)
            max_text_token_logprob = logprobs[k, : self.timestamp_begin].max()
            if timestamp_logprob > max_text_token_logprob and self._detect_timestamp_from_logprob:
                scores[k, : self.timestamp_begin] = -float("inf")

        return scores


class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] for classifier free guidance (CFG). The scores are split over the batch dimension,
    where the first half correspond to the conditional logits (predicted from the input prompt) and the second half
    correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a
    weighted average across the conditional and unconditional logits, parameterised by the `guidance_scale`.

    See [the paper](https://arxiv.org/abs/2306.05284) for more information.

    <Tip warning={true}>

    This logits processor is exclusivelly compatible with
    [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen)

    </Tip>

    Args:
        guidance_scale (float):
            The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
            Higher guidance scale encourages the model to generate samples that are more closely linked to the input
            prompt, usually at the expense of poorer quality.

    Examples:

    ```python
    >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration

    >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
    >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")

    >>> inputs = processor(
    ...     text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
    ...     padding=True,
    ...     return_tensors="pt",
    ... )
    >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
    ```
    """

    def __init__(self, guidance_scale):
        if guidance_scale > 1:
            self.guidance_scale = guidance_scale
        else:
            raise ValueError(
                "Require guidance scale >1 to use the classifier free guidance processor, got guidance scale "
                f"{guidance_scale}."
            )

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # simple check to make sure we have compatible batch sizes between our
        # logits scores (cond + uncond) and input ids (cond only)
        if scores.shape[0] != 2 * input_ids.shape[0]:
            raise ValueError(
                f"Logits should have twice the batch size of the input ids, the first half of batches corresponding to "
                f"the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got "
                f"batch size {scores.shape[0]} for the logits and {input_ids.shape[0]} for the input ids."
            )
        unguided_bsz = scores.shape[0] // 2
        cond_logits, uncond_logits = scores.split(unguided_bsz, dim=0)
        scores = uncond_logits + (cond_logits - uncond_logits) * self.guidance_scale
        return scores


class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
    r"""
    [`LogitsProcessor`] enforcing alternated generation between the two codebooks of Bark.

    <Tip warning={true}>

    This logits processor is exclusivelly compatible with
    [Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation
    for examples.

    </Tip>

    Args:
        input_start_len (`int`):
            The length of the initial input sequence.
        semantic_vocab_size (`int`):
            Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary.
        codebook_size (`int`):
            Number of tokens associated to the codebook.
    """

    def __init__(self, input_start_len: int, semantic_vocab_size: int, codebook_size: int):
        if not isinstance(input_start_len, int) or input_start_len < 0:
            raise ValueError(f"`input_starting_length` has to be a non-negative integer, but is {input_start_len}")

        self.input_start_len = input_start_len
        self.semantic_vocab_size = semantic_vocab_size
        self.codebook_size = codebook_size

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        curr_len = input_ids.shape[-1]

        # even -> first codebook, odd -> second codebook
        is_first_codebook = ((curr_len - self.input_start_len) % 2) == 0

        if is_first_codebook:
            scores[:, : self.semantic_vocab_size] = -float("inf")
            scores[:, self.semantic_vocab_size + self.codebook_size :] = -float("inf")
        else:
            scores[:, : self.semantic_vocab_size + self.codebook_size] = -float("inf")

        return scores


class UnbatchedClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
    r"""
    Logits processor for Classifier-Free Guidance (CFG). The processors computes a weighted average across scores
    from prompt conditional and prompt unconditional (or negative) logits, parameterized by the `guidance_scale`.
    The unconditional scores are computed internally by prompting `model` with the `unconditional_ids` branch.

    See [the paper](https://arxiv.org/abs/2306.17806) for more information.

    Args:
        guidance_scale (`float`):
            The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale != 1`.
            Higher guidance scale encourages the model to generate samples that are more closely linked to the input
            prompt, usually at the expense of poorer quality. A value smaller than 1 has the opposite effect, while
            making the negative prompt provided with negative_prompt_ids (if any) act as a positive prompt.
        model (`PreTrainedModel`):
            The model computing the unconditional scores. Supposedly the same as the one computing the conditional
            scores. Both models must use the same tokenizer.
        unconditional_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to
            the last token of the prompt.
        unconditional_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Attention mask for unconditional_ids.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether to cache key/values during the negative prompt forward pass.


    Examples:

    ```python
    >>> from transformers import AutoTokenizer, AutoModelForCausalLM

    >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
    >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
    >>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt")
    >>> out = model.generate(inputs["input_ids"], guidance_scale=1.5)
    >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
    'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100'

    >>> # with a negative prompt
    >>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
    >>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"])
    >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
    'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that'

    >>> # with a positive prompt
    >>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
    >>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"])
    >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
    "Today, a dragon flew over Paris, France, and I'm very happy to be here. I"
    ```
    """

    def __init__(
        self,
        guidance_scale: float,
        model,
        unconditional_ids: Optional[torch.LongTensor] = None,
        unconditional_attention_mask: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = True,
    ):
        self.guidance_scale = guidance_scale
        self.model = model
        self.unconditional_context = {
            "input_ids": unconditional_ids,
            "attention_mask": unconditional_attention_mask,
            "use_cache": use_cache,
            "past_key_values": None,
            "first_pass": True,
        }

    def get_unconditional_logits(self, input_ids):
        if self.unconditional_context["first_pass"]:
            if self.unconditional_context["input_ids"] is None:
                self.unconditional_context["input_ids"] = input_ids[:, -1:]
            if self.unconditional_context["attention_mask"] is None:
                self.unconditional_context["attention_mask"] = torch.ones_like(
                    self.unconditional_context["input_ids"], dtype=torch.long
                )
            input_ids = self.unconditional_context["input_ids"]
            attention_mask = self.unconditional_context["attention_mask"]
            self.unconditional_context["first_pass"] = False
        else:
            attention_mask = torch.cat(
                [
                    self.unconditional_context["attention_mask"],
                    torch.ones_like(input_ids[:, -1:], dtype=torch.long),
                ],
                dim=1,
            )
            if not self.unconditional_context["use_cache"]:
                input_ids = torch.cat([self.unconditional_context["input_ids"], input_ids[:, -1:]], dim=1)
            else:
                input_ids = input_ids[:, -1:]
            self.unconditional_context["input_ids"] = input_ids
            self.unconditional_context["attention_mask"] = attention_mask

        out = self.model(
            input_ids,
            attention_mask=attention_mask,
            use_cache=self.unconditional_context["use_cache"],
            past_key_values=self.unconditional_context["past_key_values"],
        )
        self.unconditional_context["past_key_values"] = out.get("past_key_values", None)

        return out.logits

    def __call__(self, input_ids, scores):
        scores = torch.nn.functional.log_softmax(scores, dim=-1)
        if self.guidance_scale == 1:
            return scores

        logits = self.get_unconditional_logits(input_ids)

        unconditional_logits = torch.nn.functional.log_softmax(logits[:, -1], dim=-1)
        out = self.guidance_scale * (scores - unconditional_logits) + unconditional_logits
        return out


class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
    r"""This processor ensures that the EOS token is selected if its probability is greater than the `min_eos_p`.

    <Tip warning={true}>

    This logits processor is exclusivelly compatible with
    [Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples.

    </Tip>

    Args:
        eos_token_id (`Union[int, List[int]]`):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        min_eos_p (`float`, *optional*):
            Minimum end of speech threshold.
    """

    def __init__(self, eos_token_id: Union[int, List[int]], min_eos_p: float):
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        self.eos_token_id = eos_token_id
        if min_eos_p is not None and min_eos_p <= 0:
            raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}")
        self.min_eos_p = min_eos_p

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if self.min_eos_p:
            probs = torch.nn.functional.softmax(scores.float(), dim=-1)
            # create scores full of -inf except for the eos_token_id
            early_stop_scores = torch.ones_like(scores) * -float("inf")
            early_stop_scores[:, self.eos_token_id] = scores[:, self.eos_token_id]

            do_early_stop = probs[:, self.eos_token_id] > self.min_eos_p
            scores = torch.where(do_early_stop, early_stop_scores, scores)

        return scores