#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, List, Optional, Union from packaging import version from ..utils import is_auto_awq_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class QuantizationMethod(str, Enum): BITS_AND_BYTES = "bitsandbytes" GPTQ = "gptq" AWQ = "awq" class AWQLinearVersion(str, Enum): GEMM = "gemm" GEMV = "gemv" @staticmethod def from_str(version: str): version = version.lower() if version == "gemm": return AWQLinearVersion.GEMM elif version == "gemv": return AWQLinearVersion.GEMV else: raise ValueError(f"Unknown AWQLinearVersion {version}") class AwqBackendPackingMethod(str, Enum): AUTOAWQ = "autoawq" LLMAWQ = "llm-awq" @dataclass class QuantizationConfigMixin: """ Mixin class for quantization config """ quant_method: QuantizationMethod @classmethod def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): """ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. Args: config_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the configuration object. return_unused_kwargs (`bool`,*optional*, defaults to `False`): Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in `PreTrainedModel`. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the configuration object. Returns: [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. """ config = cls(**config_dict) to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) if return_unused_kwargs: return config, kwargs else: return config def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this configuration instance's parameters will be saved. use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `QuantizationConfig()` is serialized to JSON file. """ with open(json_file_path, "w", encoding="utf-8") as writer: config_dict = self.to_dict() json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" writer.write(json_string) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ return copy.deepcopy(self.__dict__) def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" def to_json_string(self, use_diff: bool = True) -> str: """ Serializes this instance to a JSON string. Args: use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` is serialized to JSON string. Returns: `str`: String containing all the attributes that make up this configuration instance in JSON format. """ if use_diff is True: config_dict = self.to_diff_dict() else: config_dict = self.to_dict() return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" @dataclass class BitsAndBytesConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input time. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object. """ def __init__( self, load_in_8bit=False, load_in_4bit=False, llm_int8_threshold=6.0, llm_int8_skip_modules=None, llm_int8_enable_fp32_cpu_offload=False, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=None, bnb_4bit_quant_type="fp4", bnb_4bit_use_double_quant=False, **kwargs, ): self.quant_method = QuantizationMethod.BITS_AND_BYTES self.load_in_8bit = load_in_8bit self.load_in_4bit = load_in_4bit self.llm_int8_threshold = llm_int8_threshold self.llm_int8_skip_modules = llm_int8_skip_modules self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight self.bnb_4bit_quant_type = bnb_4bit_quant_type self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant if bnb_4bit_compute_dtype is None: self.bnb_4bit_compute_dtype = torch.float32 elif isinstance(bnb_4bit_compute_dtype, str): self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) elif isinstance(bnb_4bit_compute_dtype, torch.dtype): self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") self.post_init() def post_init(self): r""" Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. """ if not isinstance(self.llm_int8_threshold, float): raise ValueError("llm_int8_threshold must be a float") if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): raise ValueError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_int8_has_fp16_weight, bool): raise ValueError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_4bit_quant_type, str): raise ValueError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_4bit_use_double_quant, bool): raise ValueError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def is_quantizable(self): r""" Returns `True` if the model is quantizable, `False` otherwise. """ return self.load_in_8bit or self.load_in_4bit def quantization_method(self): r""" This method returns the quantization method used for the model. If the model is not quantizable, it returns `None`. """ if self.load_in_8bit: return "llm_int8" elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": return "fp4" elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": return "nf4" else: return None def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] return output def __repr__(self): config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" def to_diff_dict(self) -> Dict[str, Any]: """ Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, """ config_dict = self.to_dict() # get the default config dict default_config_dict = BitsAndBytesConfig().to_dict() serializable_config_dict = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict class ExllamaVersion(int, Enum): ONE = 1 TWO = 2 @dataclass class GPTQConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `optimum` api for gptq quantization relying on auto_gptq backend. Args: bits (`int`): The number of bits to quantize to, supported numbers are (2, 3, 4, 8). tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*): The tokenizer used to process the dataset. You can pass either: - A custom tokenizer object. - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. dataset (`Union[List[str]]`, *optional*): The dataset used for quantization. You can provide your own dataset in a list of string or just use the original datasets used in GPTQ paper ['wikitext2','c4','c4-new','ptb','ptb-new'] group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. damp_percent (`float`, *optional*, defaults to 0.1): The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1. desc_act (`bool`, *optional*, defaults to `False`): Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly speed up inference but the perplexity may become slightly worse. Also known as act-order. sym (`bool`, *optional*, defaults to `True`): Whether to use symetric quantization. true_sequential (`bool`, *optional*, defaults to `True`): Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes quantization using inputs that have passed through the previously quantized layers. use_cuda_fp16 (`bool`, *optional*, defaults to `False`): Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16. model_seqlen (`int`, *optional*): The maximum sequence length that the model can take. block_name_to_quantize (`str`, *optional*): The transformers block name to quantize. module_name_preceding_first_block (`List[str]`, *optional*): The layers that are preceding the first Transformer block. batch_size (`int`, *optional*, defaults to 1): The batch size used when processing the dataset pad_token_id (`int`, *optional*): The pad token id. Needed to prepare the dataset when `batch_size` > 1. use_exllama (`bool`, *optional*): Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. max_input_length (`int`, *optional*): The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input length. It is specific to the exllama backend with act-order. exllama_config (`Dict[str, Any]`, *optional*): The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults to `{"version": 1}` if unset. cache_block_outputs (`bool`, *optional*, defaults to `True`): Whether to cache block outputs to reuse as inputs for the succeeding block. """ def __init__( self, bits: int, tokenizer: Any = None, dataset: Optional[Union[List[str], str]] = None, group_size: int = 128, damp_percent: float = 0.1, desc_act: bool = False, sym: bool = True, true_sequential: bool = True, use_cuda_fp16: bool = False, model_seqlen: Optional[int] = None, block_name_to_quantize: Optional[str] = None, module_name_preceding_first_block: Optional[List[str]] = None, batch_size: int = 1, pad_token_id: Optional[int] = None, use_exllama: Optional[bool] = None, max_input_length: Optional[int] = None, exllama_config: Optional[Dict[str, Any]] = None, cache_block_outputs: bool = True, **kwargs, ): self.quant_method = QuantizationMethod.GPTQ self.bits = bits self.tokenizer = tokenizer self.dataset = dataset self.group_size = group_size self.damp_percent = damp_percent self.desc_act = desc_act self.sym = sym self.true_sequential = true_sequential self.use_cuda_fp16 = use_cuda_fp16 self.model_seqlen = model_seqlen self.block_name_to_quantize = block_name_to_quantize self.module_name_preceding_first_block = module_name_preceding_first_block self.batch_size = batch_size self.pad_token_id = pad_token_id self.use_exllama = use_exllama self.max_input_length = max_input_length self.exllama_config = exllama_config self.disable_exllama = kwargs.pop("disable_exllama", None) self.cache_block_outputs = cache_block_outputs self.post_init() def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict def post_init(self): r""" Safety checker that arguments are correct """ if self.bits not in [2, 3, 4, 8]: raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}") if self.group_size != -1 and self.group_size <= 0: raise ValueError("group_size must be greater than 0 or equal to -1") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.") if self.dataset is not None: if isinstance(self.dataset, str): if self.dataset not in ["wikitext2", "c4", "c4-new", "ptb", "ptb-new"]: raise ValueError( f"""You have entered a string value for dataset. You can only choose between ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) elif not isinstance(self.dataset, list): raise ValueError( f"""dataset needs to be either a list of string or a value in ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) if self.disable_exllama is None and self.use_exllama is None: # New default behaviour self.use_exllama = True elif self.disable_exllama is not None and self.use_exllama is None: # Follow pattern of old config logger.warning( "Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`." "The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file." ) self.use_exllama = not self.disable_exllama self.disable_exllama = None elif self.disable_exllama is not None and self.use_exllama is not None: # Only happens if user explicitly passes in both arguments raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`") if self.exllama_config is None: self.exllama_config = {"version": ExllamaVersion.ONE} else: if "version" not in self.exllama_config: raise ValueError("`exllama_config` needs to have a `version` key.") elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]: exllama_version = self.exllama_config["version"] raise ValueError( f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}" ) if self.bits == 4 and self.use_exllama: if self.exllama_config["version"] == ExllamaVersion.ONE: logger.info( "You have activated exllama backend. Note that you can get better inference " "speed using exllamav2 kernel by setting `exllama_config`." ) elif self.exllama_config["version"] == ExllamaVersion.TWO: optimum_version = version.parse(importlib.metadata.version("optimum")) autogptq_version = version.parse(importlib.metadata.version("auto_gptq")) if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"): raise ValueError( f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}" ) def to_dict(self): config_dict = super().to_dict() config_dict.pop("disable_exllama", None) return config_dict def to_dict_optimum(self): """ Get compatible dict for optimum gptq config """ quant_dict = self.to_dict() # make it compatible with optimum config quant_dict["disable_exllama"] = not self.use_exllama return quant_dict @classmethod def from_dict_optimum(cls, config_dict): """ Get compatible class with optimum gptq config dict """ if "disable_exllama" in config_dict: config_dict["use_exllama"] = not config_dict["disable_exllama"] # switch to None to not trigger the warning config_dict["disable_exllama"] = None config = cls(**config_dict) return config @dataclass class AwqConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `auto-awq` library awq quantization relying on auto_awq backend. Args: bits (`int`, *optional*, defaults to 4): The number of bits to quantize to. group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. zero_point (`bool`, *optional*, defaults to `True`): Whether to use zero point quantization. version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`): The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise, GEMV is better (e.g. < 8 ) backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`): The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users that quantize their own models using `llm-awq` library. do_fuse (`bool`, *optional*, defaults to `False`): Whether to fuse attention and mlp layers together for faster inference fuse_max_seq_len (`int`, *optional*): The Maximum sequence length to generate when using fusing. modules_to_fuse (`dict`, *optional*, default to `None`): Overwrite the natively supported fusing scheme with the one specified by the users. """ def __init__( self, bits: int = 4, group_size: int = 128, zero_point: bool = True, version: AWQLinearVersion = AWQLinearVersion.GEMM, backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ, do_fuse: Optional[bool] = None, fuse_max_seq_len: Optional[int] = None, modules_to_fuse: Optional[dict] = None, **kwargs, ): self.quant_method = QuantizationMethod.AWQ self.bits = bits self.group_size = group_size self.zero_point = zero_point self.version = version self.backend = backend self.fuse_max_seq_len = fuse_max_seq_len self.modules_to_fuse = modules_to_fuse if do_fuse is None: self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0 else: self.do_fuse = do_fuse self.fuse_max_seq_len = fuse_max_seq_len self.post_init() def post_init(self): r""" Safety checker that arguments are correct """ if not torch.cuda.is_available(): raise ValueError("AWQ is only available on GPU") if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]: raise ValueError( f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}" ) self.version = AWQLinearVersion.from_str(self.version) if self.version not in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV]: raise ValueError( f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV] - not recognized version {self.version}" ) if self.backend == AwqBackendPackingMethod.LLMAWQ: compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 8: raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0") if self.do_fuse and self.fuse_max_seq_len is None: raise ValueError( "You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase" ) if self.do_fuse: awq_version_supports_fusing = False MIN_AWQ_VERSION = "0.1.7" if is_auto_awq_available(): awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse( MIN_AWQ_VERSION ) if not awq_version_supports_fusing: raise ValueError( f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." ) if self.do_fuse and self.modules_to_fuse is not None: required_keys = [ "hidden_size", "num_attention_heads", "num_key_value_heads", "mlp", "attention", "layernorm", "use_alibi", ] if not all(key in self.modules_to_fuse for key in required_keys): raise ValueError( f"Required fields are missing in the fusing mapping, required fields are {required_keys}" ) def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["do_fuse", "modules_to_fuse", "fuse_max_seq_len"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict