"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" import ast import argparse import glob import pickle import gradio as gr import numpy as np import pandas as pd # notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing" notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK" basic_component_values = [None] * 6 leader_component_values = [None] * 5 def make_default_md(arena_df, elo_results): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) leaderboard_md = f""" # 🏆 LMSYS Chatbot Arena Leaderboard | [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals. We've collected over **200,000** human preference votes to rank LLMs with the Elo ranking system. """ return leaderboard_md def make_arena_leaderboard_md(arena_df): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) leaderboard_md = f""" Total #models: **{total_models}**. Total #votes: **{total_votes}**. Last updated: Jan 9, 2024. Contribute your vote 🗳️ at [chat.lmsys.org](https://chat.lmsys.org)! Find more analysis in the [notebook]({notebook_url}). """ return leaderboard_md def make_full_leaderboard_md(elo_results): leaderboard_md = f""" Two more benchmarks are displayed: **MT-Bench** and **MMLU**. - [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses. - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks. 💻 Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. """ return leaderboard_md def make_leaderboard_md_live(elo_results): leaderboard_md = f""" # Leaderboard Last updated: {elo_results["last_updated_datetime"]} {elo_results["leaderboard_table"]} """ return leaderboard_md def update_elo_components(max_num_files, elo_results_file): log_files = get_log_files(max_num_files) # Leaderboard if elo_results_file is None: # Do live update battles = clean_battle_data(log_files) elo_results = report_elo_analysis_results(battles) leader_component_values[0] = make_leaderboard_md_live(elo_results) leader_component_values[1] = elo_results["win_fraction_heatmap"] leader_component_values[2] = elo_results["battle_count_heatmap"] leader_component_values[3] = elo_results["bootstrap_elo_rating"] leader_component_values[4] = elo_results["average_win_rate_bar"] # Basic stats basic_stats = report_basic_stats(log_files) md0 = f"Last updated: {basic_stats['last_updated_datetime']}" md1 = "### Action Histogram\n" md1 += basic_stats["action_hist_md"] + "\n" md2 = "### Anony. Vote Histogram\n" md2 += basic_stats["anony_vote_hist_md"] + "\n" md3 = "### Model Call Histogram\n" md3 += basic_stats["model_hist_md"] + "\n" md4 = "### Model Call (Last 24 Hours)\n" md4 += basic_stats["num_chats_last_24_hours"] + "\n" basic_component_values[0] = md0 basic_component_values[1] = basic_stats["chat_dates_bar"] basic_component_values[2] = md1 basic_component_values[3] = md2 basic_component_values[4] = md3 basic_component_values[5] = md4 def update_worker(max_num_files, interval, elo_results_file): while True: tic = time.time() update_elo_components(max_num_files, elo_results_file) durtaion = time.time() - tic print(f"update duration: {durtaion:.2f} s") time.sleep(max(interval - durtaion, 0)) def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") return basic_component_values + leader_component_values def model_hyperlink(model_name, link): return f'{model_name}' def load_leaderboard_table_csv(filename, add_hyperlink=True): lines = open(filename).readlines() heads = [v.strip() for v in lines[0].split(",")] rows = [] for i in range(1, len(lines)): row = [v.strip() for v in lines[i].split(",")] for j in range(len(heads)): item = {} for h, v in zip(heads, row): if h == "Arena Elo rating": if v != "-": v = int(ast.literal_eval(v)) else: v = np.nan elif h == "MMLU": if v != "-": v = round(ast.literal_eval(v) * 100, 1) else: v = np.nan elif h == "MT-bench (win rate %)": if v != "-": v = round(ast.literal_eval(v[:-1]), 1) else: v = np.nan elif h == "MT-bench (score)": if v != "-": v = round(ast.literal_eval(v), 2) else: v = np.nan item[h] = v if add_hyperlink: item["Model"] = model_hyperlink(item["Model"], item["Link"]) rows.append(item) return rows def build_basic_stats_tab(): empty = "Loading ..." basic_component_values[:] = [empty, None, empty, empty, empty, empty] md0 = gr.Markdown(empty) gr.Markdown("#### Figure 1: Number of model calls and votes") plot_1 = gr.Plot(show_label=False) with gr.Row(): with gr.Column(): md1 = gr.Markdown(empty) with gr.Column(): md2 = gr.Markdown(empty) with gr.Row(): with gr.Column(): md3 = gr.Markdown(empty) with gr.Column(): md4 = gr.Markdown(empty) return [md0, plot_1, md1, md2, md3, md4] def get_full_table(arena_df, model_table_df): values = [] for i in range(len(model_table_df)): row = [] model_key = model_table_df.iloc[i]["key"] model_name = model_table_df.iloc[i]["Model"] # model display name row.append(model_name) if model_key in arena_df.index: idx = arena_df.index.get_loc(model_key) row.append(round(arena_df.iloc[idx]["rating"])) else: row.append(np.nan) row.append(model_table_df.iloc[i]["MT-bench (score)"]) row.append(model_table_df.iloc[i]["MMLU"]) # Organization row.append(model_table_df.iloc[i]["Organization"]) # license row.append(model_table_df.iloc[i]["License"]) values.append(row) values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9) return values def get_arena_table(arena_df, model_table_df): # sort by rating arena_df = arena_df.sort_values(by=["rating"], ascending=False) values = [] for i in range(len(arena_df)): row = [] model_key = arena_df.index[i] model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[ 0 ] # rank row.append(i + 1) # model display name row.append(model_name) # elo rating row.append(round(arena_df.iloc[i]["rating"])) upper_diff = round( arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"] ) lower_diff = round( arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"] ) row.append(f"+{upper_diff}/-{lower_diff}") # num battles row.append(round(arena_df.iloc[i]["num_battles"])) # Organization row.append( model_table_df[model_table_df["key"] == model_key]["Organization"].values[0] ) # license row.append( model_table_df[model_table_df["key"] == model_key]["License"].values[0] ) values.append(row) return values def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False): if elo_results_file is None: # Do live update default_md = "Loading ..." p1 = p2 = p3 = p4 = None else: with open(elo_results_file, "rb") as fin: elo_results = pickle.load(fin) p1 = elo_results["win_fraction_heatmap"] p2 = elo_results["battle_count_heatmap"] p3 = elo_results["bootstrap_elo_rating"] p4 = elo_results["average_win_rate_bar"] arena_df = elo_results["leaderboard_table_df"] default_md = make_default_md(arena_df, elo_results) md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") if leaderboard_table_file: data = load_leaderboard_table_csv(leaderboard_table_file) model_table_df = pd.DataFrame(data) with gr.Tabs() as tabs: # arena table arena_table_vals = get_arena_table(arena_df, model_table_df) with gr.Tab("Arena Elo", id=0): md = make_arena_leaderboard_md(arena_df) gr.Markdown(md, elem_id="leaderboard_markdown") gr.Dataframe( headers=[ "Rank", "🤖 Model", "⭐ Arena Elo", "📊 95% CI", "🗳️ Votes", "Organization", "License", ], datatype=[ "str", "markdown", "number", "str", "number", "str", "str", ], value=arena_table_vals, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[50, 200, 100, 100, 100, 150, 150], wrap=True, ) with gr.Tab("Full Leaderboard", id=1): md = make_full_leaderboard_md(elo_results) gr.Markdown(md, elem_id="leaderboard_markdown") full_table_vals = get_full_table(arena_df, model_table_df) gr.Dataframe( headers=[ "🤖 Model", "⭐ Arena Elo", "📈 MT-bench", "📚 MMLU", "Organization", "License", ], datatype=["markdown", "number", "number", "number", "str", "str"], value=full_table_vals, elem_id="full_leaderboard_dataframe", column_widths=[200, 100, 100, 100, 150, 150], height=700, wrap=True, ) if not show_plot: gr.Markdown( """ ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis! If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model). """, elem_id="leaderboard_markdown", ) else: pass leader_component_values[:] = [default_md, p1, p2, p3, p4] if show_plot: gr.Markdown( f"""## More Statistics for Chatbot Arena\n Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}). You can find more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/). """, elem_id="leaderboard_markdown" ) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles" ) plot_1 = gr.Plot(p1, show_label=False) with gr.Column(): gr.Markdown( "#### Figure 2: Battle Count for Each Combination of Models (without Ties)" ) plot_2 = gr.Plot(p2, show_label=False) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)" ) plot_3 = gr.Plot(p3, show_label=False) with gr.Column(): gr.Markdown( "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)" ) plot_4 = gr.Plot(p4, show_label=False) gr.Markdown(acknowledgment_md) if show_plot: return [md_1, plot_1, plot_2, plot_3, plot_4] return [md_1] block_css = """ #notice_markdown { font-size: 104% } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_markdown { font-size: 104% } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_dataframe td { line-height: 0.1em; } footer { display:none !important } .image-container { display: flex; align-items: center; padding: 1px; } .image-container img { margin: 0 30px; height: 20px; max-height: 100%; width: auto; max-width: 20%; } """ acknowledgment_md = """ ### Acknowledgment
We thank Kaggle, MBZUAI, AnyScale, a16z, and HuggingFace for their generous sponsorship.