update
Browse files- app.py +196 -75
- elo_results_20240109.pkl +3 -0
- leaderboard_table_20240109.csv +69 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ import pickle
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
|
11 |
# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
|
@@ -16,17 +17,41 @@ basic_component_values = [None] * 6
|
|
16 |
leader_component_values = [None] * 5
|
17 |
|
18 |
|
19 |
-
def
|
|
|
|
|
|
|
20 |
leaderboard_md = f"""
|
21 |
-
# Leaderboard
|
22 |
-
| [Vote](https://chat.lmsys.org
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a model's multitask accuracy on 57 tasks.
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
return leaderboard_md
|
32 |
|
@@ -152,94 +177,190 @@ def build_basic_stats_tab():
|
|
152 |
md4 = gr.Markdown(empty)
|
153 |
return [md0, plot_1, md1, md2, md3, md4]
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
def build_leaderboard_tab(elo_results_file, leaderboard_table_file):
|
158 |
if elo_results_file is None: # Do live update
|
159 |
-
|
160 |
p1 = p2 = p3 = p4 = None
|
161 |
else:
|
162 |
with open(elo_results_file, "rb") as fin:
|
163 |
elo_results = pickle.load(fin)
|
164 |
|
165 |
-
md = make_leaderboard_md(elo_results)
|
166 |
p1 = elo_results["win_fraction_heatmap"]
|
167 |
p2 = elo_results["battle_count_heatmap"]
|
168 |
p3 = elo_results["bootstrap_elo_rating"]
|
169 |
p4 = elo_results["average_win_rate_bar"]
|
|
|
|
|
170 |
|
171 |
-
md_1 = gr.Markdown(
|
172 |
-
|
173 |
if leaderboard_table_file:
|
174 |
data = load_leaderboard_table_csv(leaderboard_table_file)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
"
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
else:
|
205 |
pass
|
206 |
|
207 |
-
|
208 |
-
f"""## More Statistics for Chatbot Arena\n
|
209 |
-
We added some additional figures to show more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
|
210 |
-
Please note that you may see different orders from different ranking methods. This is expected for models that perform similarly, as demonstrated by the confidence interval in the bootstrap figure. Going forward, we prefer the classical Elo calculation because of its scalability and interpretability. You can find more discussions in this blog [post](https://lmsys.org/blog/2023-05-03-arena/).
|
211 |
-
""",
|
212 |
-
elem_id="leaderboard_markdown"
|
213 |
-
)
|
214 |
-
|
215 |
-
leader_component_values[:] = [md, p1, p2, p3, p4]
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
)
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
gr.Markdown(acknowledgment_md)
|
241 |
|
242 |
-
|
|
|
|
|
243 |
|
244 |
block_css = """
|
245 |
#notice_markdown {
|
@@ -300,7 +421,7 @@ def build_demo(elo_results_file, leaderboard_table_file):
|
|
300 |
css=block_css,
|
301 |
) as demo:
|
302 |
leader_components = build_leaderboard_tab(
|
303 |
-
elo_results_file, leaderboard_table_file
|
304 |
)
|
305 |
return demo
|
306 |
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
|
11 |
|
12 |
# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
|
|
|
17 |
leader_component_values = [None] * 5
|
18 |
|
19 |
|
20 |
+
def make_default_md(arena_df, elo_results):
|
21 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
22 |
+
total_models = len(arena_df)
|
23 |
+
|
24 |
leaderboard_md = f"""
|
25 |
+
# π LMSYS Chatbot Arena Leaderboard
|
26 |
+
| [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
|
27 |
+
|
28 |
+
LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals.
|
29 |
+
We've collected over **200,000** human preference votes to rank LLMs with the Elo ranking system.
|
30 |
+
"""
|
31 |
+
return leaderboard_md
|
32 |
+
|
33 |
|
34 |
+
def make_arena_leaderboard_md(arena_df):
|
35 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
36 |
+
total_models = len(arena_df)
|
|
|
37 |
|
38 |
+
leaderboard_md = f"""
|
39 |
+
Total #models: **{total_models}**. Total #votes: **{total_votes}**. Last updated: Jan 9, 2024.
|
40 |
+
|
41 |
+
Contribute your vote π³οΈ at [chat.lmsys.org](https://chat.lmsys.org)! Find more analysis in the [notebook]({notebook_url}).
|
42 |
+
"""
|
43 |
+
return leaderboard_md
|
44 |
+
|
45 |
+
|
46 |
+
def make_full_leaderboard_md(elo_results):
|
47 |
+
leaderboard_md = f"""
|
48 |
+
Two more benchmarks are displayed: **MT-Bench** and **MMLU**.
|
49 |
+
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
|
50 |
+
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.
|
51 |
+
|
52 |
+
π» Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
|
53 |
+
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
|
54 |
+
Higher values are better for all benchmarks. Empty cells mean not available.
|
55 |
"""
|
56 |
return leaderboard_md
|
57 |
|
|
|
177 |
md4 = gr.Markdown(empty)
|
178 |
return [md0, plot_1, md1, md2, md3, md4]
|
179 |
|
180 |
+
def get_full_table(arena_df, model_table_df):
|
181 |
+
values = []
|
182 |
+
for i in range(len(model_table_df)):
|
183 |
+
row = []
|
184 |
+
model_key = model_table_df.iloc[i]["key"]
|
185 |
+
model_name = model_table_df.iloc[i]["Model"]
|
186 |
+
# model display name
|
187 |
+
row.append(model_name)
|
188 |
+
if model_key in arena_df.index:
|
189 |
+
idx = arena_df.index.get_loc(model_key)
|
190 |
+
row.append(round(arena_df.iloc[idx]["rating"], 1))
|
191 |
+
else:
|
192 |
+
row.append(np.nan)
|
193 |
+
row.append(model_table_df.iloc[i]["MT-bench (score)"])
|
194 |
+
row.append(model_table_df.iloc[i]["MMLU"])
|
195 |
+
# Organization
|
196 |
+
row.append(model_table_df.iloc[i]["Organization"])
|
197 |
+
# license
|
198 |
+
row.append(model_table_df.iloc[i]["License"])
|
199 |
+
|
200 |
+
values.append(row)
|
201 |
+
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
202 |
+
return values
|
203 |
+
|
204 |
+
|
205 |
+
def get_arena_table(arena_df, model_table_df):
|
206 |
+
# sort by rating
|
207 |
+
arena_df = arena_df.sort_values(by=["rating"], ascending=False)
|
208 |
+
values = []
|
209 |
+
for i in range(len(arena_df)):
|
210 |
+
row = []
|
211 |
+
model_key = arena_df.index[i]
|
212 |
+
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
213 |
+
0
|
214 |
+
]
|
215 |
|
216 |
+
# rank
|
217 |
+
row.append(i + 1)
|
218 |
+
# model display name
|
219 |
+
row.append(model_name)
|
220 |
+
# elo rating
|
221 |
+
row.append(round(arena_df.iloc[i]["rating"], 1))
|
222 |
+
upper_diff = round(
|
223 |
+
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"], 1
|
224 |
+
)
|
225 |
+
lower_diff = round(
|
226 |
+
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"], 1
|
227 |
+
)
|
228 |
+
row.append(f"+{upper_diff}/-{lower_diff}")
|
229 |
+
# num battles
|
230 |
+
row.append(round(arena_df.iloc[i]["num_battles"]))
|
231 |
+
# Organization
|
232 |
+
row.append(
|
233 |
+
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
234 |
+
)
|
235 |
+
# license
|
236 |
+
row.append(
|
237 |
+
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
238 |
+
)
|
239 |
+
|
240 |
+
values.append(row)
|
241 |
+
return values
|
242 |
|
243 |
+
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
|
244 |
if elo_results_file is None: # Do live update
|
245 |
+
default_md = "Loading ..."
|
246 |
p1 = p2 = p3 = p4 = None
|
247 |
else:
|
248 |
with open(elo_results_file, "rb") as fin:
|
249 |
elo_results = pickle.load(fin)
|
250 |
|
|
|
251 |
p1 = elo_results["win_fraction_heatmap"]
|
252 |
p2 = elo_results["battle_count_heatmap"]
|
253 |
p3 = elo_results["bootstrap_elo_rating"]
|
254 |
p4 = elo_results["average_win_rate_bar"]
|
255 |
+
arena_df = elo_results["leaderboard_table_df"]
|
256 |
+
default_md = make_default_md(arena_df, elo_results)
|
257 |
|
258 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
|
|
259 |
if leaderboard_table_file:
|
260 |
data = load_leaderboard_table_csv(leaderboard_table_file)
|
261 |
+
model_table_df = pd.DataFrame(data)
|
262 |
+
|
263 |
+
with gr.Tabs() as tabs:
|
264 |
+
# arena table
|
265 |
+
arena_table_vals = get_arena_table(arena_df, model_table_df)
|
266 |
+
with gr.Tab("Arena Elo", id=0):
|
267 |
+
md = make_arena_leaderboard_md(arena_df)
|
268 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
269 |
+
gr.Dataframe(
|
270 |
+
headers=[
|
271 |
+
"Rank",
|
272 |
+
"π€ Model",
|
273 |
+
"β Arena Elo",
|
274 |
+
"π 95% CI",
|
275 |
+
"π³οΈ Votes",
|
276 |
+
"Organization",
|
277 |
+
"License",
|
278 |
+
],
|
279 |
+
datatype=[
|
280 |
+
"str",
|
281 |
+
"markdown",
|
282 |
+
"number",
|
283 |
+
"str",
|
284 |
+
"number",
|
285 |
+
"str",
|
286 |
+
"str",
|
287 |
+
],
|
288 |
+
value=arena_table_vals,
|
289 |
+
elem_id="arena_leaderboard_dataframe",
|
290 |
+
height=700,
|
291 |
+
column_widths=[50, 200, 100, 100, 100, 150, 150],
|
292 |
+
wrap=True,
|
293 |
+
)
|
294 |
+
with gr.Tab("Full Leaderboard", id=1):
|
295 |
+
md = make_full_leaderboard_md(elo_results)
|
296 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
297 |
+
full_table_vals = get_full_table(arena_df, model_table_df)
|
298 |
+
gr.Dataframe(
|
299 |
+
headers=[
|
300 |
+
"π€ Model",
|
301 |
+
"β Arena Elo",
|
302 |
+
"π MT-bench",
|
303 |
+
"π MMLU",
|
304 |
+
"Organization",
|
305 |
+
"License",
|
306 |
+
],
|
307 |
+
datatype=["markdown", "number", "number", "number", "str", "str"],
|
308 |
+
value=full_table_vals,
|
309 |
+
elem_id="full_leaderboard_dataframe",
|
310 |
+
column_widths=[200, 100, 100, 100, 150, 150],
|
311 |
+
height=700,
|
312 |
+
wrap=True,
|
313 |
+
)
|
314 |
+
if not show_plot:
|
315 |
+
gr.Markdown(
|
316 |
+
""" ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
|
317 |
+
If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
|
318 |
+
""",
|
319 |
+
elem_id="leaderboard_markdown",
|
320 |
+
)
|
321 |
else:
|
322 |
pass
|
323 |
|
324 |
+
leader_component_values[:] = [default_md, p1, p2, p3, p4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
if show_plot:
|
327 |
+
gr.Markdown(
|
328 |
+
f"""## More Statistics for Chatbot Arena\n
|
329 |
+
Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
|
330 |
+
You can find more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
|
331 |
+
""",
|
332 |
+
elem_id="leaderboard_markdown"
|
333 |
+
)
|
334 |
+
with gr.Row():
|
335 |
+
with gr.Column():
|
336 |
+
gr.Markdown(
|
337 |
+
"#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
|
338 |
+
)
|
339 |
+
plot_1 = gr.Plot(p1, show_label=False)
|
340 |
+
with gr.Column():
|
341 |
+
gr.Markdown(
|
342 |
+
"#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
|
343 |
+
)
|
344 |
+
plot_2 = gr.Plot(p2, show_label=False)
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
gr.Markdown(
|
348 |
+
"#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)"
|
349 |
+
)
|
350 |
+
plot_3 = gr.Plot(p3, show_label=False)
|
351 |
+
with gr.Column():
|
352 |
+
gr.Markdown(
|
353 |
+
"#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
|
354 |
+
)
|
355 |
+
plot_4 = gr.Plot(p4, show_label=False)
|
356 |
+
|
357 |
+
from fastchat.serve.gradio_web_server import acknowledgment_md
|
358 |
|
359 |
gr.Markdown(acknowledgment_md)
|
360 |
|
361 |
+
if show_plot:
|
362 |
+
return [md_1, plot_1, plot_2, plot_3, plot_4]
|
363 |
+
return [md_1]
|
364 |
|
365 |
block_css = """
|
366 |
#notice_markdown {
|
|
|
421 |
css=block_css,
|
422 |
) as demo:
|
423 |
leader_components = build_leaderboard_tab(
|
424 |
+
elo_results_file, leaderboard_table_file, show_plot=True
|
425 |
)
|
426 |
return demo
|
427 |
|
elo_results_20240109.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a334a1a5000f62dd9491d6fb2c7b136cce3fd37647ffec0e9c0c084919783ea
|
3 |
+
size 264666
|
leaderboard_table_20240109.csv
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
key,Model,MT-bench (score),MMLU,License,Organization,Link
|
2 |
+
wizardlm-30b,WizardLM-30B,7.01,0.587,Non-commercial,Microsoft,https://huggingface.co/WizardLM/WizardLM-30B-V1.0
|
3 |
+
vicuna-13b-16k,Vicuna-13B-16k,6.92,0.545,Llama 2 Community,LMSYS,https://huggingface.co/lmsys/vicuna-13b-v1.5-16k
|
4 |
+
wizardlm-13b-v1.1,WizardLM-13B-v1.1,6.76,0.500,Non-commercial,Microsoft,https://huggingface.co/WizardLM/WizardLM-13B-V1.1
|
5 |
+
tulu-30b,Tulu-30B,6.43,0.581,Non-commercial,AllenAI/UW,https://huggingface.co/allenai/tulu-30b
|
6 |
+
guanaco-65b,Guanaco-65B,6.41,0.621,Non-commercial,UW,https://huggingface.co/timdettmers/guanaco-65b-merged
|
7 |
+
openassistant-llama-30b,OpenAssistant-LLaMA-30B,6.41,0.560,Non-commercial,OpenAssistant,https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor
|
8 |
+
wizardlm-13b-v1.0,WizardLM-13B-v1.0,6.35,0.523,Non-commercial,Microsoft,https://huggingface.co/WizardLM/WizardLM-13B-V1.0
|
9 |
+
vicuna-7b-16k,Vicuna-7B-16k,6.22,0.485,Llama 2 Community,LMSYS,https://huggingface.co/lmsys/vicuna-7b-v1.5-16k
|
10 |
+
baize-v2-13b,Baize-v2-13B,5.75,0.489,Non-commercial,UCSD,https://huggingface.co/project-baize/baize-v2-13b
|
11 |
+
xgen-7b-8k-inst,XGen-7B-8K-Inst,5.55,0.421,Non-commercial,Salesforce,https://huggingface.co/Salesforce/xgen-7b-8k-inst
|
12 |
+
nous-hermes-13b,Nous-Hermes-13B,5.51,0.493,Non-commercial,NousResearch,https://huggingface.co/NousResearch/Nous-Hermes-13b
|
13 |
+
mpt-30b-instruct,MPT-30B-Instruct,5.22,0.478,CC-BY-SA 3.0,MosaicML,https://huggingface.co/mosaicml/mpt-30b-instruct
|
14 |
+
falcon-40b-instruct,Falcon-40B-Instruct,5.17,0.547,Apache 2.0,TII,https://huggingface.co/tiiuae/falcon-40b-instruct
|
15 |
+
h2o-oasst-openllama-13b,H2O-Oasst-OpenLLaMA-13B,4.63,0.428,Apache 2.0,h2oai,https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b
|
16 |
+
gpt-4-turbo,GPT-4-Turbo,9.32,-,Proprietary,OpenAI,https://openai.com/blog/new-models-and-developer-products-announced-at-devday
|
17 |
+
gpt-4-0314,GPT-4-0314,8.96,0.864,Proprietary,OpenAI,https://openai.com/research/gpt-4
|
18 |
+
claude-1,Claude-1,7.90,0.770,Proprietary,Anthropic,https://www.anthropic.com/index/introducing-claude
|
19 |
+
gpt-4-0613,GPT-4-0613,9.18,-,Proprietary,OpenAI,https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
|
20 |
+
claude-2.0,Claude-2.0,8.06,0.785,Proprietary,Anthropic,https://www.anthropic.com/index/claude-2
|
21 |
+
claude-2.1,Claude-2.1,8.18,-,Proprietary,Anthropic,https://www.anthropic.com/index/claude-2-1
|
22 |
+
gpt-3.5-turbo-0613,GPT-3.5-Turbo-0613,8.39,-,Proprietary,OpenAI,https://platform.openai.com/docs/models/gpt-3-5
|
23 |
+
mixtral-8x7b-instruct-v0.1,Mixtral-8x7b-Instruct-v0.1,8.30,0.706,Apache 2.0,Mistral,https://mistral.ai/news/mixtral-of-experts/
|
24 |
+
claude-instant-1,Claude-Instant-1,7.85,0.734,Proprietary,Anthropic,https://www.anthropic.com/index/introducing-claude
|
25 |
+
gpt-3.5-turbo-0314,GPT-3.5-Turbo-0314,7.94,0.700,Proprietary,OpenAI,https://platform.openai.com/docs/models/gpt-3-5
|
26 |
+
tulu-2-dpo-70b,Tulu-2-DPO-70B,7.89,-,AI2 ImpACT Low-risk,AllenAI/UW,https://huggingface.co/allenai/tulu-2-dpo-70b
|
27 |
+
yi-34b-chat,Yi-34B-Chat,-,0.735,Yi License,01 AI,https://huggingface.co/01-ai/Yi-34B-Chat
|
28 |
+
gemini-pro,Gemini Pro,-,0.718,Proprietary,Google,https://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/quickstart-multimodal
|
29 |
+
gemini-pro-dev-api,Gemini Pro (Dev),-,0.718,Proprietary,Google,https://ai.google.dev/docs/gemini_api_overview
|
30 |
+
wizardlm-70b,WizardLM-70B-v1.0,7.71,0.637,Llama 2 Community,Microsoft,https://huggingface.co/WizardLM/WizardLM-70B-V1.0
|
31 |
+
vicuna-33b,Vicuna-33B,7.12,0.592,Non-commercial,LMSYS,https://huggingface.co/lmsys/vicuna-33b-v1.3
|
32 |
+
starling-lm-7b-alpha,Starling-LM-7B-alpha,8.09,0.639,CC-BY-NC-4.0,UC Berkeley,https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha
|
33 |
+
pplx-70b-online,pplx-70b-online,-,-,Proprietary,Perplexity AI,https://blog.perplexity.ai/blog/introducing-pplx-online-llms
|
34 |
+
openchat-3.5,OpenChat-3.5,7.81,0.643,Apache-2.0,OpenChat,https://huggingface.co/openchat/openchat_3.5
|
35 |
+
openhermes-2.5-mistral-7b,OpenHermes-2.5-Mistral-7b,-,-,Apache-2.0,NousResearch,https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
|
36 |
+
gpt-3.5-turbo-1106,GPT-3.5-Turbo-1106,8.32,-,Proprietary,OpenAI,https://platform.openai.com/docs/models/gpt-3-5
|
37 |
+
llama-2-70b-chat,Llama-2-70b-chat,6.86,0.630,Llama 2 Community,Meta,https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
|
38 |
+
solar-10.7b-instruct-v1.0,SOLAR-10.7B-Instruct-v1.0,7.58,0.662,CC-BY-NC-4.0,Upstage AI,https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0
|
39 |
+
dolphin-2.2.1-mistral-7b,Dolphin-2.2.1-Mistral-7B,-,-,Apache-2.0,Cognitive Computations,https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b
|
40 |
+
wizardlm-13b,WizardLM-13b-v1.2,7.20,0.527,Llama 2 Community,Microsoft,https://huggingface.co/WizardLM/WizardLM-13B-V1.2
|
41 |
+
zephyr-7b-beta,Zephyr-7b-beta,7.34,0.614,MIT,HuggingFace,https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
|
42 |
+
mpt-30b-chat,MPT-30B-chat,6.39,0.504,CC-BY-NC-SA-4.0,MosaicML,https://huggingface.co/mosaicml/mpt-30b-chat
|
43 |
+
vicuna-13b,Vicuna-13B,6.57,0.558,Llama 2 Community,LMSYS,https://huggingface.co/lmsys/vicuna-13b-v1.5
|
44 |
+
qwen-14b-chat,Qwen-14B-Chat,6.96,0.665,Qianwen LICENSE,Alibaba,https://huggingface.co/Qwen/Qwen-14B-Chat
|
45 |
+
zephyr-7b-alpha,Zephyr-7b-alpha,6.88,-,MIT,HuggingFace,https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
|
46 |
+
codellama-34b-instruct,CodeLlama-34B-instruct,-,0.537,Llama 2 Community,Meta,https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
|
47 |
+
falcon-180b-chat,falcon-180b-chat,-,0.680,Falcon-180B TII License,TII,https://huggingface.co/tiiuae/falcon-180B-chat
|
48 |
+
guanaco-33b,Guanaco-33B,6.53,0.576,Non-commercial,UW,https://huggingface.co/timdettmers/guanaco-33b-merged
|
49 |
+
llama-2-13b-chat,Llama-2-13b-chat,6.65,0.536,Llama 2 Community,Meta,https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
|
50 |
+
mistral-7b-instruct,Mistral-7B-Instruct-v0.1,6.84,0.554,Apache 2.0,Mistral,https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
|
51 |
+
pplx-7b-online,pplx-7b-online,-,-,Proprietary,Perplexity AI,https://blog.perplexity.ai/blog/introducing-pplx-online-llms
|
52 |
+
llama-2-7b-chat,Llama-2-7b-chat,6.27,0.458,Llama 2 Community,Meta,https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
|
53 |
+
vicuna-7b,Vicuna-7B,6.17,0.498,Llama 2 Community,LMSYS,https://huggingface.co/lmsys/vicuna-7b-v1.5
|
54 |
+
palm-2,PaLM-Chat-Bison-001,6.40,-,Proprietary,Google,https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models#foundation_models
|
55 |
+
koala-13b,Koala-13B,5.35,0.447,Non-commercial,UC Berkeley,https://bair.berkeley.edu/blog/2023/04/03/koala/
|
56 |
+
chatglm3-6b,ChatGLM3-6B,-,-,Apache-2.0,Tsinghua,https://huggingface.co/THUDM/chatglm3-6b
|
57 |
+
gpt4all-13b-snoozy,GPT4All-13B-Snoozy,5.41,0.430,Non-commercial,Nomic AI,https://huggingface.co/nomic-ai/gpt4all-13b-snoozy
|
58 |
+
mpt-7b-chat,MPT-7B-Chat,5.42,0.320,CC-BY-NC-SA-4.0,MosaicML,https://huggingface.co/mosaicml/mpt-7b-chat
|
59 |
+
chatglm2-6b,ChatGLM2-6B,4.96,0.455,Apache-2.0,Tsinghua,https://huggingface.co/THUDM/chatglm2-6b
|
60 |
+
RWKV-4-Raven-14B,RWKV-4-Raven-14B,3.98,0.256,Apache 2.0,RWKV,https://huggingface.co/BlinkDL/rwkv-4-raven
|
61 |
+
alpaca-13b,Alpaca-13B,4.53,0.481,Non-commercial,Stanford,https://crfm.stanford.edu/2023/03/13/alpaca.html
|
62 |
+
oasst-pythia-12b,OpenAssistant-Pythia-12B,4.32,0.270,Apache 2.0,OpenAssistant,https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
|
63 |
+
chatglm-6b,ChatGLM-6B,4.50,0.361,Non-commercial,Tsinghua,https://huggingface.co/THUDM/chatglm-6b
|
64 |
+
fastchat-t5-3b,FastChat-T5-3B,3.04,0.477,Apache 2.0,LMSYS,https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
|
65 |
+
stablelm-tuned-alpha-7b,StableLM-Tuned-Alpha-7B,2.75,0.244,CC-BY-NC-SA-4.0,Stability AI,https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b
|
66 |
+
dolly-v2-12b,Dolly-V2-12B,3.28,0.257,MIT,Databricks,https://huggingface.co/databricks/dolly-v2-12b
|
67 |
+
llama-13b,LLaMA-13B,2.61,0.470,Non-commercial,Meta,https://arxiv.org/abs/2302.13971
|
68 |
+
mistral-medium,Mistral Medium,8.61,0.753,Proprietary,Mistral,https://mistral.ai/news/la-plateforme/
|
69 |
+
llama2-70b-steerlm-chat,Llama2-70B-SteerLM-Chat,7.54,-,Llama 2 Community,Nvidia,https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat
|